
1

Chapter 4

Greedy
Algorithms

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.

4.1 Interval Scheduling

3

Interval Scheduling

Interval scheduling.
 Job j starts at sj and finishes at fj.
 Two jobs compatible if they don't overlap.
 Goal: find maximum subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

4

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some order. Take each job provided
it's compatible with the ones already taken.

 What order? Does that give best answer? Why or why not?
Does it help to be greedy about order?

5

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some order. Take each job provided
it's compatible with the ones already taken.

 [Earliest start time] Consider jobs in ascending order of start time
sj.

 [Earliest finish time] Consider jobs in ascending order of finish
time fj.

 [Shortest interval] Consider jobs in ascending order of interval
length fj - sj.

 [Fewest conflicts] For each job, count the number of conflicting
jobs cj. Schedule in ascending order of conflicts cj.

6

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some order. Take each job provided
it's compatible with the ones already taken.

breaks earliest start time

breaks shortest interval

breaks fewest conflicts

7

Greedy algorithm. Consider jobs in increasing order of finish time.
Take each job provided it's compatible with the ones already taken.

Implementation. O(n log n).
 Remember job j* that was added last to A.
 Job j is compatible with A if sj ≥ fj*.

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn.

A ← φ
for j = 1 to n {
 if (job j compatible with A)
 A ← A ∪ {j}
}
return A

jobs selected

Interval Scheduling: Greedy Algorithm

8

Interval Scheduling

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

0 1 2 3 4 5 6 7 8 9 10 11

9

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11
B

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

10

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11
B C

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

11

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11
B A

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

12

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11
B E

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

13

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11
B ED

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

14

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11
B E F

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

15

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11
B E G

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

16

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11
B E H

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

17

Interval Scheduling: Analysis

Theorem. Greedy algorithm is optimal.

Pf. (by contradiction)
 Assume greedy is not optimal, and let's see what happens.
 Let i1, i2, ... ik denote set of jobs selected by greedy.
 Let j1, j2, ... jm denote set of jobs in the optimal solution with

i1 = j1, i2 = j2, ..., ir = jr for the largest possible value of r.

j1 j2 jr

i1 i1 ir ir+1

. . .

Greedy:

OPT: jr+1

why not replace job jr+1
with job ir+1?

job ir+1 finishes before jr+1

18

j1 j2 jr

i1 i1 ir ir+1

Interval Scheduling: Analysis

Theorem. Greedy algorithm is optimal.

Pf. (by contradiction)
 Assume greedy is not optimal, and let's see what happens.
 Let i1, i2, ... ik denote set of jobs selected by greedy.
 Let j1, j2, ... jm denote set of jobs in the optimal solution with

i1 = j1, i2 = j2, ..., ir = jr for the largest possible value of r.

. . .

Greedy:

OPT:

solution still feasible and optimal,
but contradicts maximality of r.

ir+1

job ir+1 finishes before jr+1

4.1 Interval Partitioning

20

Interval Partitioning

Interval partitioning.
 Lecture j starts at sj and finishes at fj.
 Goal: find minimum number of classrooms to schedule all lectures so

that no two occur at the same time in the same room.

Ex: This schedule uses 4 classrooms to schedule 10 lectures.

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

b

a

e

d g

f i

j

3 3:30 4 4:30

21

Vertices = classes;
edges = conflicting class pairs;
different colors = different assigned rooms

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

b

a

e

d g

f i

j

3 3:30 4 4:30

C

B

A

E

D G

F

J

H

I

Interval Partitioning as Interval Graph Coloring

Note: graph coloring is very
hard in general, but graphs
corresponding to interval
intersections are a much

simpler special
case.

Room 1

Room 2

Room 3

Room 4

22

Interval Partitioning

Interval partitioning.
 Lecture j starts at sj and finishes at fj.
 Goal: find minimum number of classrooms to schedule all lectures so

that no two occur at the same time in the same room.

Ex: This schedule uses only 3.

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

23

Interval Partitioning: Lower Bound on Optimal Solution

Def. The depth of a set of open intervals is the maximum number that
contain any given time.

Key observation. Number of classrooms needed ≥ depth.

Ex: Depth of schedule below = 3 ⇒ schedule below is optimal.

Q. Does there always exist a schedule equal to depth of intervals?

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

a, b, c all contain 9:30

no collisions at ends

24

Interval Partitioning: Greedy Algorithm

Greedy algorithm. Consider lectures in increasing order of start time:
assign lecture to any compatible classroom.

Implementation. O(n log n).
 For each classroom k, maintain the finish time of the last job added.
 Keep the classrooms in a priority queue.

Sort intervals by starting time so that s1 ≤ s2 ≤ ... ≤ sn.
d ← 0

for j = 1 to n {
 if (lect j is compatible with some classroom k, 1≤k≤d)
 schedule lecture j in classroom k
 else
 allocate a new classroom d + 1
 schedule lecture j in classroom d + 1
 d ← d + 1
}

number of allocated classrooms

Implementation? Run-time?
Next HW

25

Interval Partitioning: Greedy Analysis

Observation. Greedy algorithm never schedules two incompatible
lectures in the same classroom.

Theorem. Greedy algorithm is optimal.
Pf.

 Let d = number of classrooms that the greedy algorithm allocates.
 Classroom d is opened because we needed to schedule a job, say j,

that is incompatible with all d-1 other classrooms.
 Since we sorted by start time, all these incompatibilities are caused

by lectures that start no later than sj.
 Thus, we have d lectures overlapping at time sj + ε, i.e. depth ≥ d
 “Key observation” ⇒ all schedules use ≥ depth classrooms, so

d = depth and greedy is optimal ▪

26

Interval Partitioning: Alt Proof (exchange argument)

When 4th room added, rm 1 was free; why not swap it in there?
(A: it conflicts with later stuff in schedule, which dominoes)
But: rm 4 schedule after 11:00 is conflict-free; so is rm 1 schedule, so could
swap both post-11:00 schedules
Why does it help? Delays needing 4th room; repeat.
Cleaner: “Let S* be an opt sched with latest use of last room; … swap; …
contradiction”

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

b

a

e

d g

f i

j

3 3:30 4 4:30

4.2 Scheduling to Minimize Lateness

28

Scheduling to Minimizing Lateness

Minimizing lateness problem.
 Single resource processes one job at a time.
 Job j requires tj units of processing time and is due at time dj.
 If j starts at time sj, it finishes at time fj = sj + tj.
 Lateness: lj = max { 0, fj - dj }.
 Goal: schedule all jobs to minimize maximum lateness L = max lj.

Ex:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14d2 = 8 d6 = 15 d1 = 6 d4 = 9d3 = 9

lateness = 0lateness = 2

dj 6

tj 3

1

8

2

2

9

1

3

9

4

4

14

3

5

15

2

6

max lateness = 6

29

Minimizing Lateness: Greedy Algorithms

Greedy template. Consider jobs in some order.

 [Shortest processing time first]
 Consider jobs in ascending order of processing time tj.

 [Earliest deadline first]
 Consider jobs in ascending order of deadline dj.

 [Smallest slack]
 Consider jobs in ascending order of slack dj - tj.

30

Greedy template. Consider jobs in some order.

 [Shortest processing time first] Consider jobs in ascending order
of processing time tj.

 [Smallest slack] Consider jobs in ascending order of slack dj - tj.

counterexample

counterexample

dj

tj

100

1

1

10

10

2

dj

tj

2

1

1

10

10

2

Minimizing Lateness: Greedy Algorithms

31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14d2 = 8 d6 = 15d1 = 6 d4 = 9d3 = 9

max lateness = 1

Sort n jobs by deadline so that d1 ≤ d2 ≤ … ≤ dn

t ← 0
for j = 1 to n
 Assign job j to interval [t, t + tj]
 sj ← t, fj ← t + tj
 t ← t + tj
output intervals [sj, fj]

Minimizing Lateness: Greedy Algorithm

Greedy algorithm. Earliest deadline first.

dj 6

tj 3

1

8

2

2

9

1

3

9

4

4

14

3

5

15

2

6

32

Minimizing Lateness: No Idle Time

Observation. There exists an optimal schedule with no idle time.

Observation. The greedy schedule has no idle time.

0 1 2 3 4 5 6

d = 4 d = 6
7 8 9 10 11

d = 12

0 1 2 3 4 5 6

d = 4 d = 6
7 8 9 10 11

d = 12

33

Minimizing Lateness: Inversions

Def. An inversion in schedule S is a pair of jobs i and j such that:
deadline i < j but j scheduled before i.

Observation. Greedy schedule has no inversions.

Observation. If a schedule (with no idle time) has an inversion, it has
one with a pair of inverted jobs scheduled consecutively.

ijbefore swap

inversion

34

Minimizing Lateness: Inversions

Def. An inversion in schedule S is a pair of jobs i and j such that:
deadline i < j but j scheduled before i.

Claim. Swapping two adjacent, inverted jobs reduces the number of
inversions by one and does not increase the max lateness.

Pf. Let l be the lateness before the swap, and let l ' be it afterwards.
 l'k = lk for all k ≠ i, j
 l'i ≤ li
 If job j is now late:

ij

i j

before swap

after swap

!

" l j = " f j # d j (definition)

= fi # d j (j finishes at time f i)

$ fi # di (i < j, so di $ d j)

$ l i (definition)

f'j

fi
inversion

(j had later
deadline,
so is less
tardy than i
was)

35

Minimizing Lateness: Analysis of Greedy Algorithm

Theorem. Greedy schedule S is optimal.
Pf. Define S* to be an optimal schedule that has the fewest number of
inversions, and let's see what happens.

 Can assume S* has no idle time.
 If S* has no inversions, then S = S*.
 If S* has an inversion, let i-j be an adjacent inversion.

– swapping i and j does not increase the maximum lateness and
strictly decreases the number of inversions

– this contradicts definition of S* ▪

36

Greedy Analysis Strategies

Greedy algorithm stays ahead. Show that after each step of the
greedy algorithm, its solution is at least as good as any other
algorithm's.

Exchange argument. Gradually transform any solution to the one found
by the greedy algorithm without hurting its quality.

Structural. Discover a simple "structural" bound asserting that every
possible solution must have a certain value. Then show that your
algorithm always achieves this bound.

4.3 Optimal Caching

38

Optimal Offline Caching

Caching.
 Cache with capacity to store k items.
 Sequence of m item requests d1, d2, …, dm.
 Cache hit: item already in cache when requested.
 Cache miss: item not already in cache when requested: must bring

requested item into cache, and evict some existing item, if full.

Goal. Eviction schedule that minimizes number of cache misses.

Ex: k = 2, initial cache = ab,
 requests: a, b, c, b, c, a, a, b.
Optimal eviction schedule: 2 cache misses.

a b
a b
c b
c b
c b
a b

a
b
c
b
c
a

a ba
a bb

cacherequests

39

Optimal Offline Caching: Farthest-In-Future

Farthest-in-future. Evict item in the cache that is not requested until
farthest in the future.

Theorem. [Bellady, 1960s] FF is optimal eviction schedule.
Pf. Algorithm and theorem are intuitive; proof is subtle.

a b

g a b c e d a b b a c d e a f a d e f g h ...

current cache: c d e f

future queries:

cache miss eject this one

4.4 Shortest Paths in a Graph

You’ve seen this in 373, so this section and next two on min spanning
tree are review. I won’t lecture on them, but you should review the
material. Both, but especially shortest paths, are common problems with
many applications.

48

Shortest Path Problem

Shortest path network.
 Directed graph G = (V, E).
 Source s, destination t.
 Length le = length of edge e.

Shortest path problem: find shortest directed path from s to t.

Cost of path s-2-3-5-t
 = 9 + 23 + 2 + 16
 = 48.

s

3

t

2

6

7

4
5

 23

 18
 2

 9

 14

 15 5

 30

 20

 44

 16

 11

 6

 19

 6

cost of path = sum of edge costs in path

49

Dijkstra's Algorithm

Dijkstra's algorithm.
 Maintain a set of explored nodes S for which we have determined

the shortest path distance d(u) from s to u.
 Initialize S = { s }, d(s) = 0.
 Repeatedly choose unexplored node v which minimizes

add v to S, and set d(v) = π(v).

,)(min)(
:),(

e
Suvue

udv l+=
!=

"

s

v

u
d(u)

S

le

shortest path to some u in explored
part, followed by a single edge (u, v)

50

Dijkstra's Algorithm

Dijkstra's algorithm.
 Maintain a set of explored nodes S for which we have determined

the shortest path distance d(u) from s to u.
 Initialize S = { s }, d(s) = 0.
 Repeatedly choose unexplored node v which minimizes

add v to S, and set d(v) = π(v).

,)(min)(
:),(

e
Suvue

udv l+=
!=

"

s

v

u
d(u)

shortest path to some u in explored
part, followed by a single edge (u, v)

S

le

Coin Changing

Greed is good. Greed is right. Greed works.
Greed clarifies, cuts through, and captures the
essence of the evolutionary spirit.
 - Gordon Gecko (Michael Douglas)

55

Coin Changing

Goal. Given currency denominations: 1, 5, 10, 25, 100, devise a method
to pay amount to customer using fewest number of coins.

Ex: 34¢.

Cashier's algorithm. At each iteration, add coin of the largest value
that does not take us past the amount to be paid.

Ex: $2.89.

56

Coin-Changing: Greedy Algorithm

Cashier's algorithm. At each iteration, add coin of the largest value
that does not take us past the amount to be paid.

Q. Is cashier's algorithm optimal?

Sort coins denominations by value: c1 < c2 < … < cn.

S ← φ
while (x ≠ 0) {
 let k be largest integer such that ck ≤ x
 if (k = 0)
 return "no solution found"
 x ← x - ck
 S ← S ∪ {k}
}
return S

coins selected

57

Coin-Changing: Analysis of Greedy Algorithm

Theorem. Greed is optimal for U.S. coinage: 1, 5, 10, 25, 100.
Pf. (by induction on x)

 Consider optimal way to change ck ≤ x < ck+1 : greedy takes coin k.
 We claim that any optimal solution must also take coin k.

– if not, it needs enough coins of type c1, …, ck-1 to add up to x
– table below indicates no optimal solution can do this

 Problem reduces to coin-changing x - ck cents, which, by induction, is
optimally solved by greedy algorithm. ▪

1

ck

10

25

100

P ≤ 4

All optimal solutions
must satisfy

N + D ≤ 2

Q ≤ 3

5 N ≤ 1

no limit

k

1

3

4

5

2

-

Max value of coins
1, 2, …, k-1 in any OPT

4 + 5 = 9

20 + 4 = 24

4

75 + 24 = 99

58

Coin-Changing: Analysis of Greedy Algorithm

Observation. Greedy algorithm is sub-optimal for US postal
denominations: 1, 10, 21, 34, 70, 100, 350, 1225, 1500.

Counterexample. 140¢.
 Greedy: 100, 34, 1, 1, 1, 1, 1, 1.
 Optimal: 70, 70.

