
1

CSE 417: Algorithms and
Computational Complexity

Winter 2006
Graphs and Graph Algorithms

Larry Ruzzo

2

Kevin Kline was in
“French Kiss”
with Meg Ryan

Meg Ryan was in
“Sleepless in Seattle”

with Tom Hanks

Tom Hanks was in
“Apollo 13”

with Kevin Bacon

3

Objects & Relationships

 The Kevin Bacon Game:
 Actors
 Two are related if they’ve been in a movie together

 Exam Scheduling:
 Classes
 Two are related if they have students in common

 Traveling Salesperson Problem:
 Cities
 Two are related if can travel directly between them

4

Graphs

 An extremely important formalism for
representing (binary) relationships

 Objects: “vertices”, aka “nodes”
 Relationships between pairs: “edges”, aka

“arcs”
 Formally, a graph G = (V, E) is a pair of

sets, V the vertices and E the edges

5

Undirected Graph G = (V,E)
1

2
10

9

8

3

4

5
6

7

11
12

13

6

Undirected Graph G = (V,E)
1

2
10

9

8

3

4

5
6

7

11
12

13

7

Undirected Graph G = (V,E)
1

2
10

9

8

3

4

5
6

7

11
12

13

8

Undirected Graph G = (V,E)
1

2
10

9

8

3

4

5
6

7

11
12

13

“loop”

“multi-
 edge”

9

Undirected Graph G = (V,E)
1

2
10

9

8

3

4

5
6

7

11
12

13

“loop”

“multi-
 edge”

10

Graphs don’t live in Flatland

 Geometrical drawing is mentally
convenient, but mathematically
irrelevant: 4 drawings, 1 graph.

A

7 4

3
A

74

3

A

74

3

A

7 4

3

11

Directed Graph G = (V,E)
1

2
10

9

8

3

4

5
6

7

11
12

13

12

Directed Graph G = (V,E)
1

2
10

9

8

3

4

5
6

7

11
12

13

13

Directed Graph G = (V,E)
1

2
10

9

8

3

4

5
6

7

11
12

13

14

Directed Graph G = (V,E)
1

2
10

9

8

3

4

5
6

7

11
12

13

“loop”

“multi-
 edge”

15

Directed Graph G = (V,E)
1

2
10

9

8

3

4

5
6

7

11
12

13

“loop”

“multi-
 edge”

16

A

7 4

3

Specifying undirected
graphs as input

 What are the vertices?
 Explicitly list them:

{“A”, “7”, “3”, “4”}
 What are the edges?
 Either, set of edges

{{A,3}, {7,4}, {4,3}, {4,A}}
 Or, (symmetric)

adjacency matrix:

!

A 7 3 4

A 0 0 1 1

7 0 0 0 1

3 1 0 0 1

4 1 1 1 0

17

A

7 4

3

Specifying directed
graphs as input

 What are the vertices
 Explicitly list them:

{“A”, “7”, “3”, “4”}
 What are the edges
 Either, set of directed

edges: {(A,4), (4,7), (4,3),
(4,A), (A,3)}

 Or, (nonsymmetric)
adjacency matrix:

!

A 7 3 4

A 0 0 1 1

7 0 0 0 0

3 0 0 0 0

4 1 1 1 0

18

Vertices vs # Edges

 Let G be an undirected graph with n vertices
and m edges

 How are n and m related?
 Since
 every edge connects two different vertices (no loops),

and
 no two edges connect the same two vertices (no

multi-edges),
it must be true that: 0 ≤ m ≤ n(n-1)/2 = O(n2)

19

More Cool Graph Lingo

 A graph is called sparse if m << n2, otherwise it
is dense
 Boundary is somewhat fuzzy; O(n) edges is certainly

sparse, Ω(n2) edges is dense.
 Sparse graphs are common in practice
 E.g., all planar graphs are sparse

 Q: which is a better run time, O(n+m) or O(n2)?
A: O(n+m) = O(n2), but n+m usually way better!

20

Representing Graph G = (V,E)

 Vertex set V = {v1, …, vn}
 Adjacency Matrix A
 A[i,j] = 1 iff (vi,vj) ∈ E
 Space is n2 bits

 Advantages:
 O(1) test for presence or absence of edges.

 Disadvantages: inefficient for sparse graphs,
both in storage and access

m << n2

!

A 7 3 4

A 0 0 1 1

7 0 0 0 1

3 1 0 0 1

4 1 1 1 0

A

743

internally, indp of input format

21

Representing Graph G=(V,E)
n vertices, m edges

 Adjacency List:
 O(n+m) words

 Advantages:
 Compact for

sparse graphs
 Easily see all edges

 Disadvantages
 More complex data structure
 no O(1) edge test

7

7

v3

v2

v1

vn

2 6

2 4

3

5

1

22

Representing Graph G=(V,E)
n vertices, m edges

 Adjacency List:
 O(n+m) words

 Back- and cross pointers more work to build, but
allow easier traversal and deletion of edges, if
needed, (don’t bother if not)

1

7

v3

v2

v1

v7

2 6

2 4

3

5

1

23

Graph Traversal

 Learn the basic structure of a graph
 “Walk,” via edges, from a fixed starting

vertex v to all vertices reachable from v

 Three states of vertices
 undiscovered
 discovered
 fully-explored

24

Breadth-First Search

 Completely explore the vertices in order of
their distance from v

 Naturally implemented using a queue

25

BFS(v)

Global initialization: mark all vertices "undiscovered"
BFS(v)

mark v "discovered"
queue = v
while queue not empty

u = remove_first(queue)
for each edge {u,x}

if (x is undiscovered)
mark x discovered
append x on queue

mark u completed

Exercise: modify
code to number
vertices & compute
level numbers

26

BFS(v)
1

2 3

10

5

4

9

12
8

13

6
7

11

27

BFS(v)
1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:
1

28

BFS(v)
1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:
2 3

29

BFS(v)
1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:
3 4

30

BFS(v)
1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:
4 5 6 7

31

BFS(v)
1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:
5 6 7 8 9

32

BFS(v)
1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:
8 9 10 11

33

BFS(v)
1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:
10 11 12 13

34

BFS(v)
1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:

35

BFS analysis

 Each edge is explored once from each
end-point (at most)

 Each vertex is discovered by following a
different edge

 Total cost O(m) where m=# of edges

36

Properties of (Undirected) BFS(v)

 BFS(v) visits x if and only if there is a path in G
from v to x.

 Edges into then-undiscovered vertices define a
tree – the "breadth first spanning tree" of G

 Level i in this tree are exactly those vertices u
such that the shortest path (in G, not just the tree) from
the root v is of length i.

 All non-tree edges join vertices on the same or
adjacent levels

37

BFS Application: Shortest Paths
1

2 3

10

5

4

9

12
8

13

6
7

11

0

1

2

3

4
can label by distances from start

all edges connect same/adjacent levels

Tree (solid edges)
gives shortest
paths from
start vertex

38

Why fuss about trees?

 Trees are simpler than graphs
 Ditto for algorithms on trees vs on graphs
 So, this is often a good way to approach a graph

problem: find a “nice” tree in the graph, i.e., one
such that non-tree edges have some simplifying
structure

 E.g., BFS finds a tree s.t. level-jumps are
minimized

 DFS (next) finds a different tree, but it also has
interesting structure…

39

Graph Search Application:
Connected Components

 Want to answer questions of the form:
 given vertices u and v, is there a

path from u to v?

 Idea: create array A such that
A[u] = smallest numbered vertex

 that is connected to u
 question reduces to whether A[u]=A[v]?

Q: Why not
create 2-d
array
Path[u,v]?

40

Graph Search Application:
Connected Components

 initial state: all v undiscovered
for v=1 to n do

if state(v) != fully-explored then
BFS(v): setting A[u] ←v for each u found
(and marking u discovered/fully-explored)

endif
endfor

 Total cost: O(n+m)
 each edge is touched a constant number of times
 works also with DFS

41

Depth-First Search

 Follow the first path you find as far as you
can go

 Back up to last unexplored edge when
you reach a dead end, then go as far you
can

 Naturally implemented using recursive
calls or a stack

