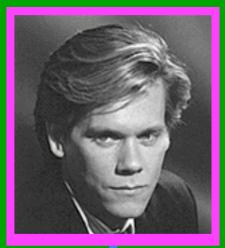
CSE 417: Algorithms and Computational Complexity

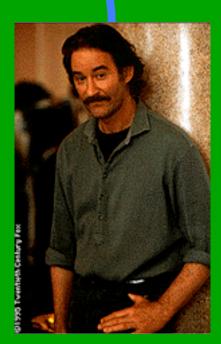
Winter 2006 Graphs and Graph Algorithms Larry Ruzzo



Kevin Kline was in "French Kiss" with Meg Ryan

Meg Ryan was in "Sleepless in Seattle" with Tom Hanks

Tom Hanks was in "Apollo 13" with Kevin Bacon



Objects & Relationships

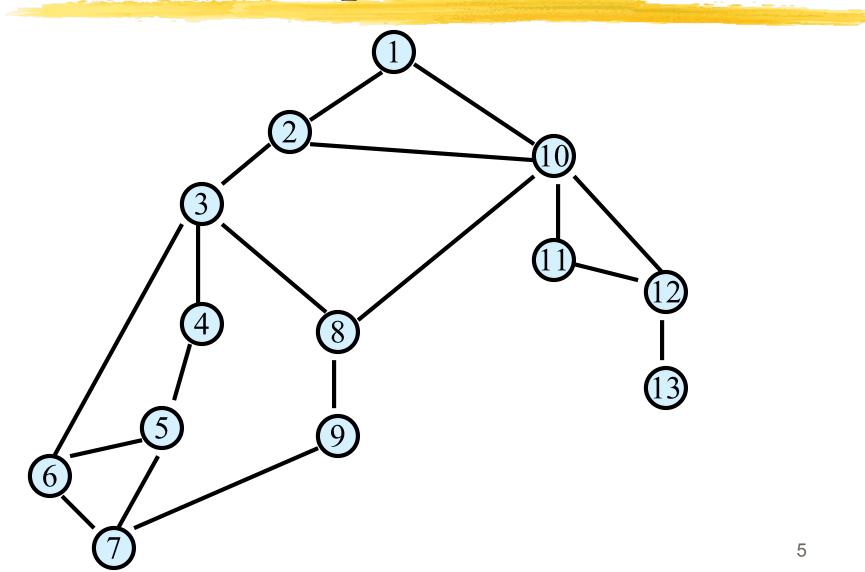
The Kevin Bacon Game:

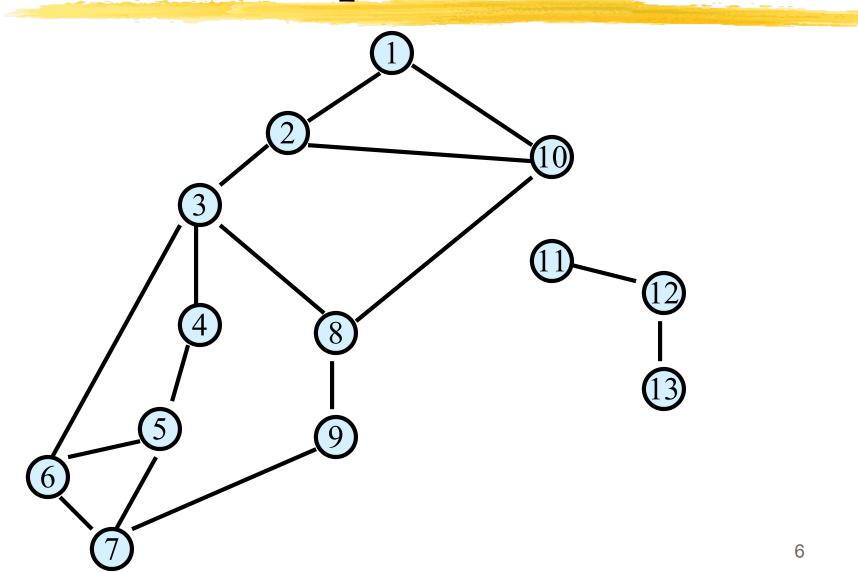
Actors

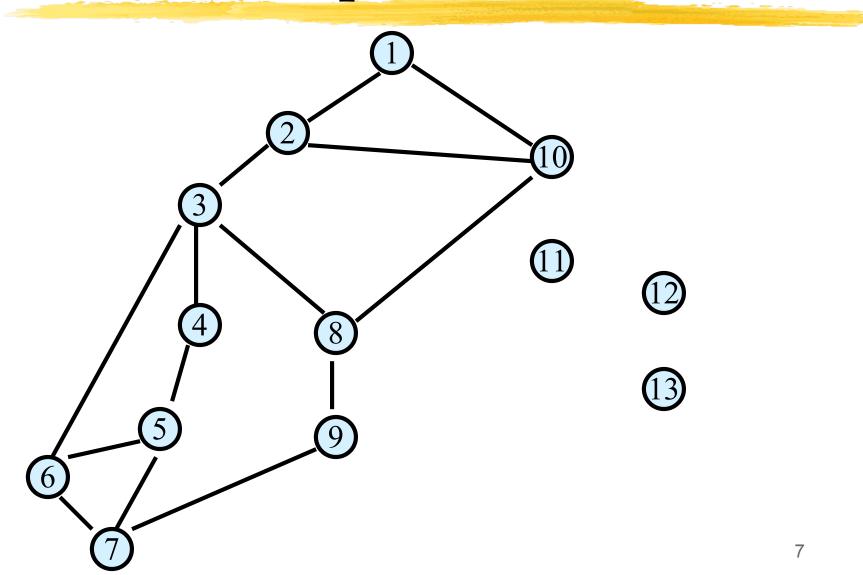
- Two are related if they've been in a movie together
- Exam Scheduling:
 - Classes
 - Two are related if they have students in common
- **Traveling Salesperson Problem:**
 - Cities
 - Two are related if can travel *directly* between them

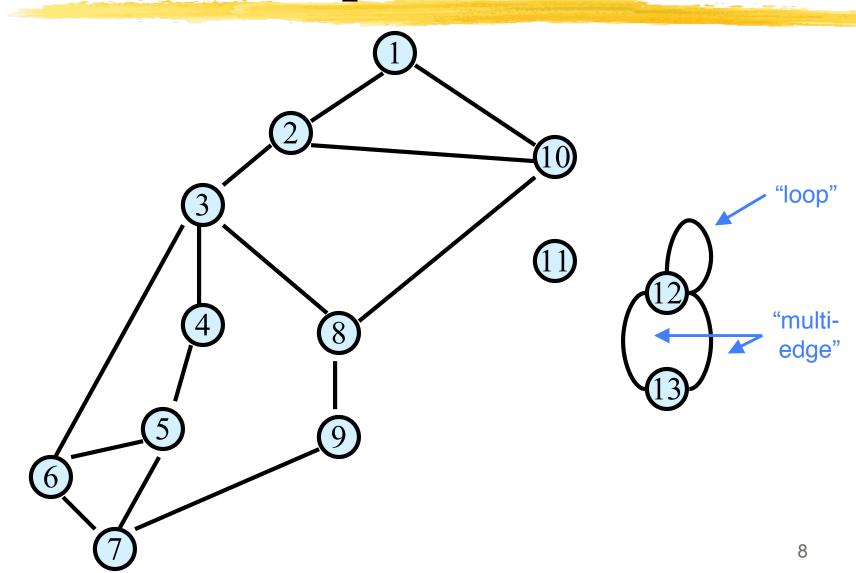
Graphs

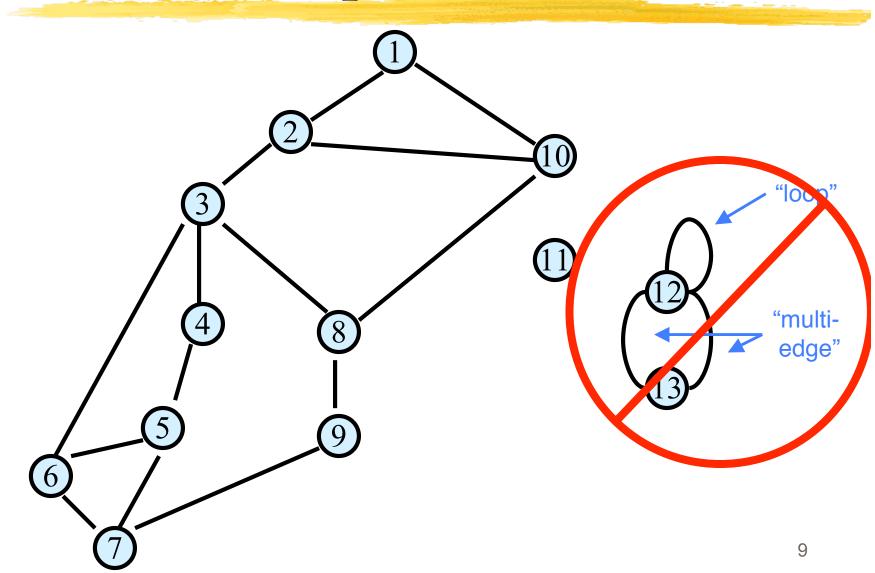
- An extremely important formalism for representing (binary) relationships
- Objects: "vertices", aka "nodes"
- Relationships between pairs: "edges", aka "arcs"
- Formally, a graph G = (V, E) is a pair of sets, V the vertices and E the edges





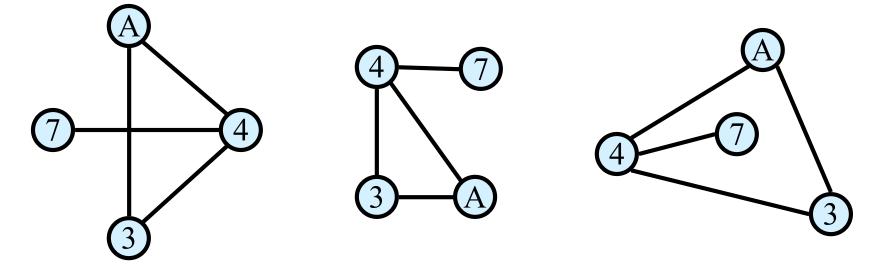


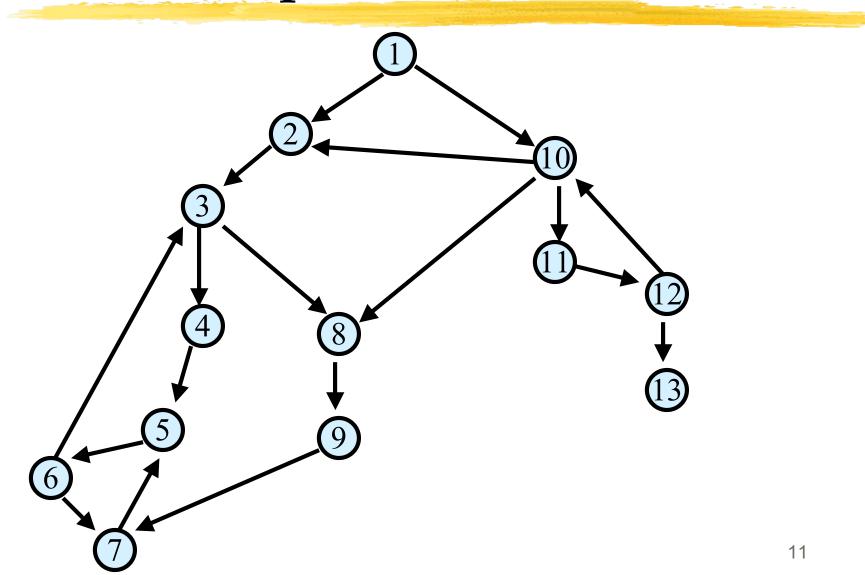


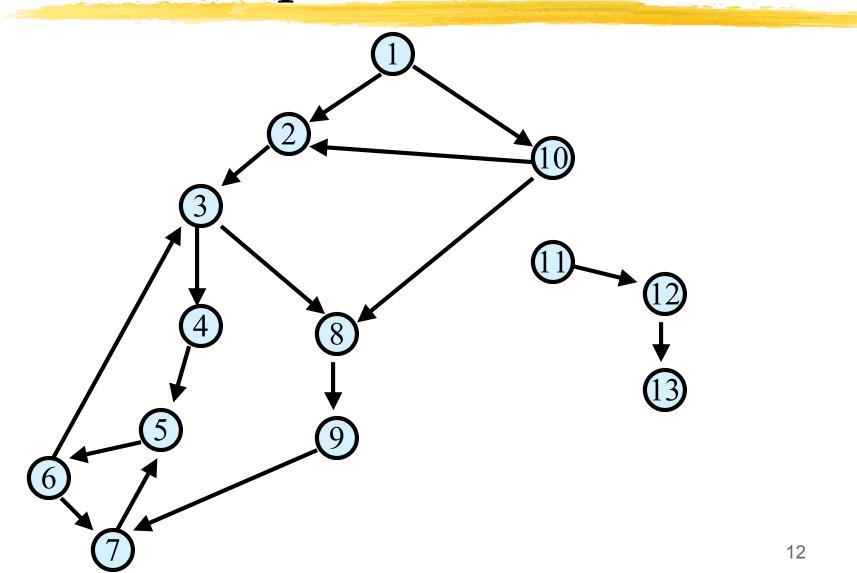


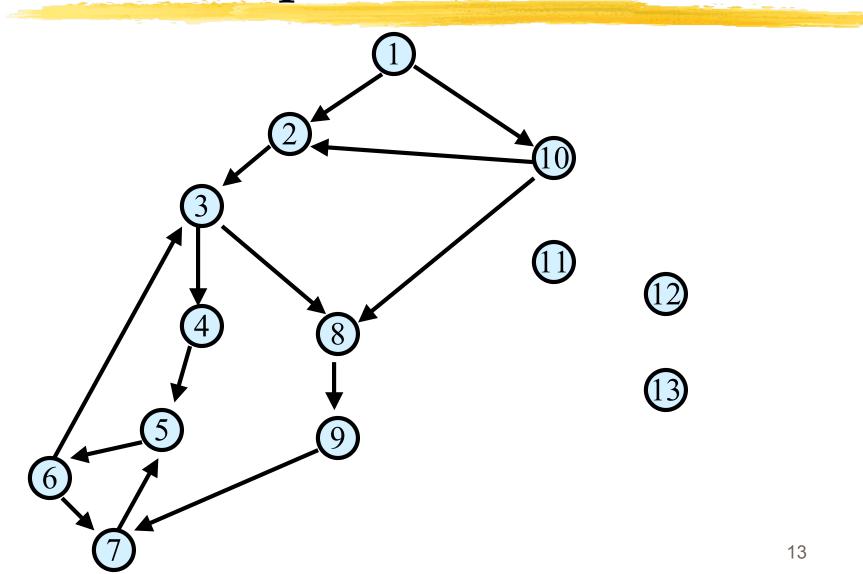
Graphs don't live in Flatland

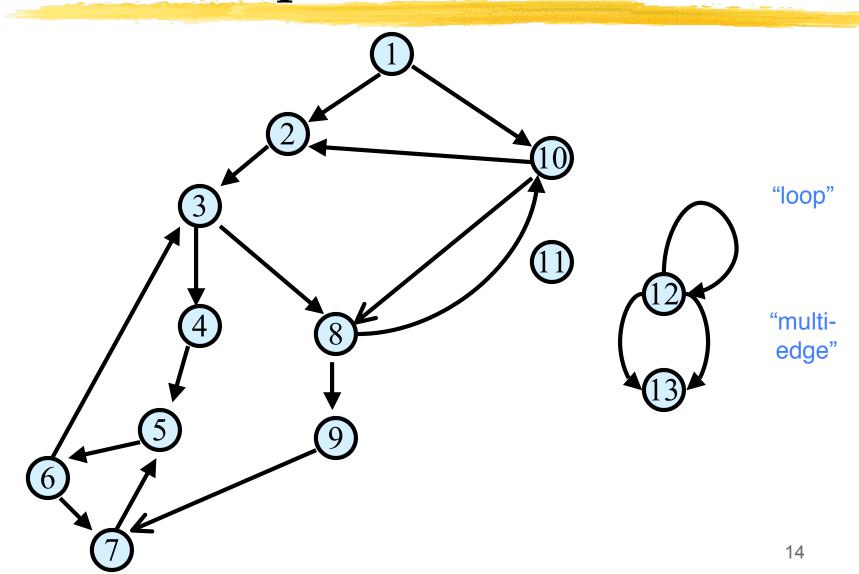
Geometrical drawing is mentally convenient, but mathematically irrelevant: 4 drawings, 1 graph.

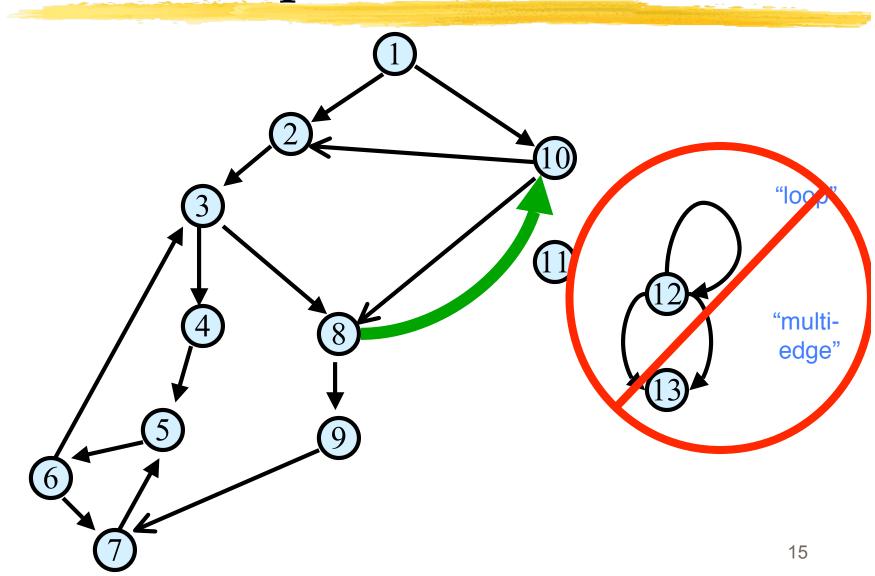








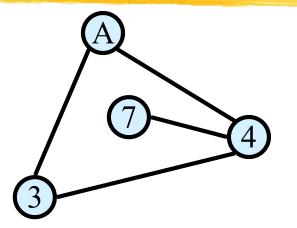




Specifying undirected graphs as input

What are the vertices? Explicitly list them: {"A", "7", "3", "4"} What are the edges?

- Either, set of edges {{A,3}, {7,4}, {4,3}, {4,A}}
- Or, (symmetric) adjacency matrix:



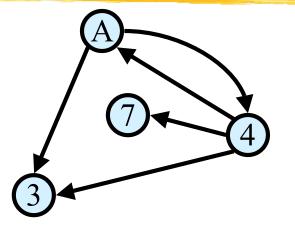
Specifying directed graphs as input

What are the vertices

Explicitly list them: {"A", "7", "3", "4"}

What are the edges

- Either, set of directed edges: {(A,4), (4,7), (4,3), (4,A), (A,3)}
- Or, (nonsymmetric) adjacency matrix:



Vertices vs # Edges

- Let G be an undirected graph with n vertices and m edges
- How are n and m related?
- Since
 - every edge connects two *different* vertices (no loops), and
 - no two edges connect the same two vertices (no multi-edges),

it must be true that:

$$0 \le m \le n(n-1)/2 = O(n^2)$$

More Cool Graph Lingo

- A graph is called *sparse* if m << n², otherwise it is *dense*
 - Boundary is somewhat fuzzy; O(n) edges is certainly sparse, $\Omega(n^2)$ edges is dense.
- Sparse graphs are common in practice
 - E.g., all planar graphs are sparse
 - Q: which is a better run time, O(n+m) or $O(n^2)$?

A: $O(n+m) = O(n^2)$, but n+m usually way better!

Representing Graph G = (V,E)

internally, indp of input format

Vertex set $V = \{v_1, ..., v_n\}$

Adjacency Matrix A

- A[i,j] = 1 iff $(v_i, v_j) \in E$
- Space is n² bits

		7		4
\overline{A}	0 0	0	1	1
7	0	0	0	1
3	1	0	0	1
4	1	1	1	0

Advantages:

O(1) test for presence or absence of edges.

Disadvantages: inefficient for sparse graphs, both in storage and access

Representing Graph **G=(V,E) n** vertices, **m** edges

Adjacency List:

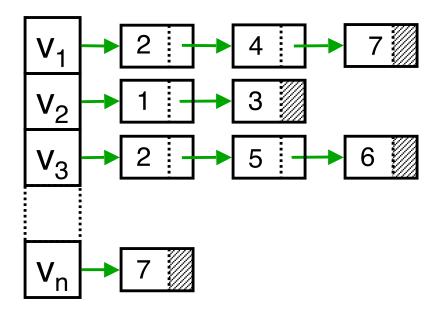
O(n+m) words

Advantages:

Compact for sparse graphs
Easily see all edges

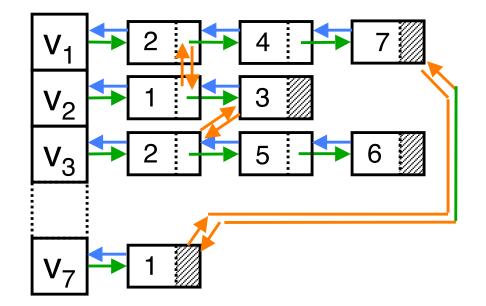
Disadvantages

- More complex data structure
- no O(1) edge test



Representing Graph **G=(V,E) n** vertices, **m** edges

Adjacency List:
 O(n+m) words



Back- and cross pointers more work to build, but allow easier traversal and deletion of edges, *if needed*, (don't bother if not)

Graph Traversal

Learn the basic structure of a graph
 "Walk," <u>via edges</u>, from a fixed starting vertex v to all vertices reachable from v

- Three states of vertices
 - undiscovered
 - discovered
 - I fully-explored

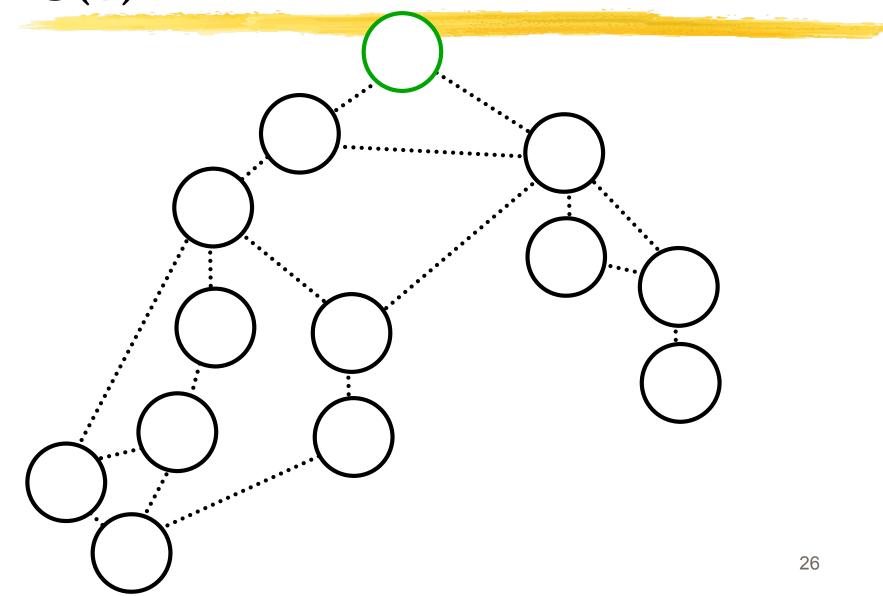
Breadth-First Search

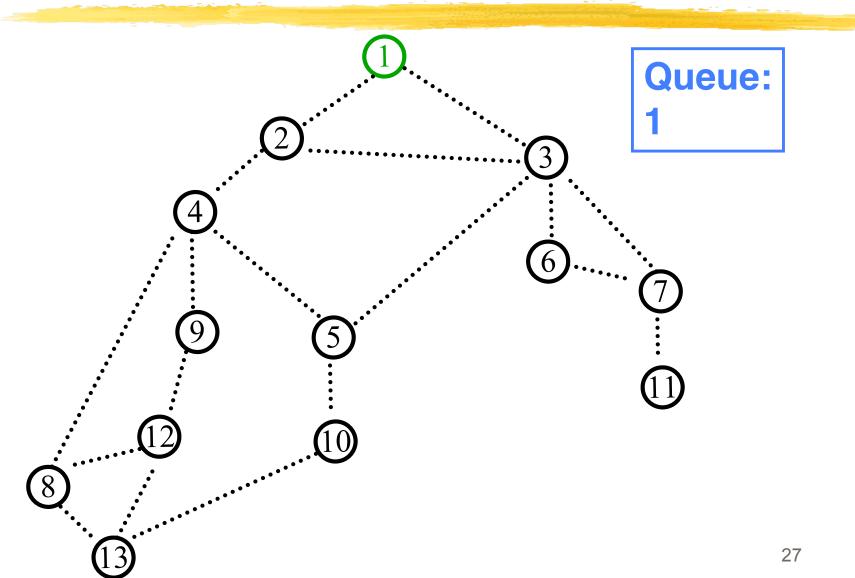
Completely explore the vertices in order of their distance from v

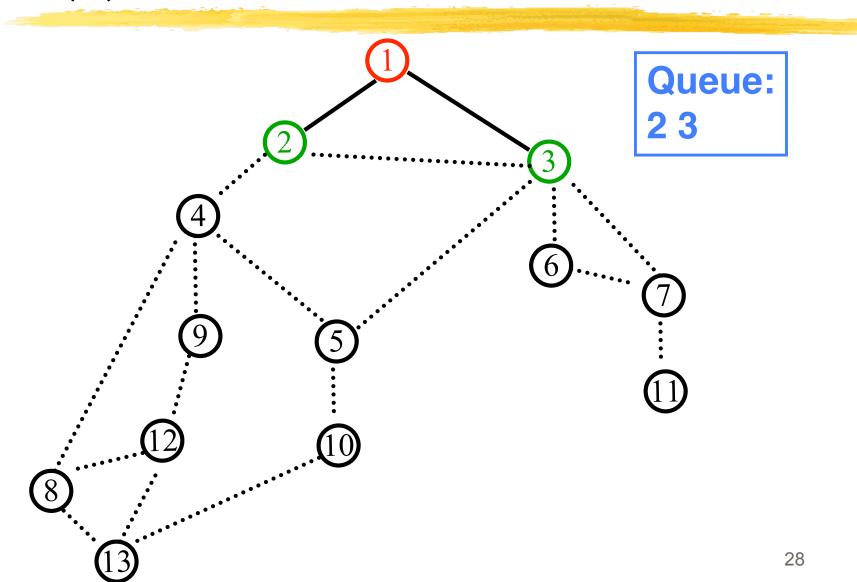
Naturally implemented using a queue

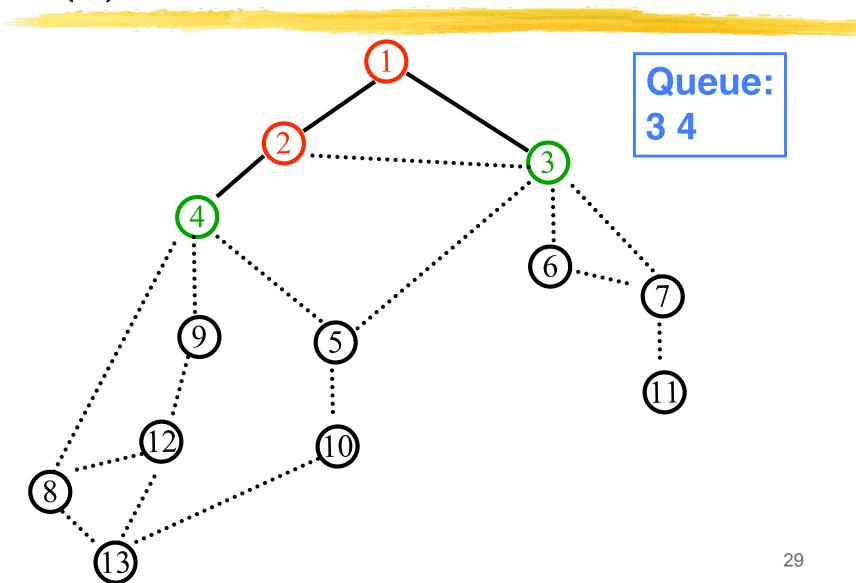
BFS(v)

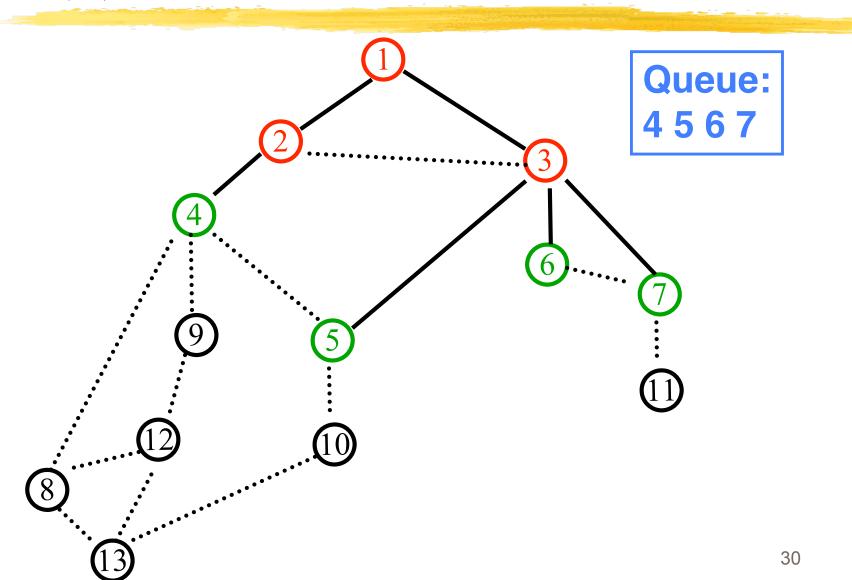
Global initialization: mark all vertices "undiscovered" BFS(v)mark v "discovered" queue = vwhile queue not empty u = remove_first(queue) for each edge $\{u, x\}$ if (x is undiscovered) **Exercise:** modify code to number mark x discovered vertices & compute append x on queue level numbers mark u completed

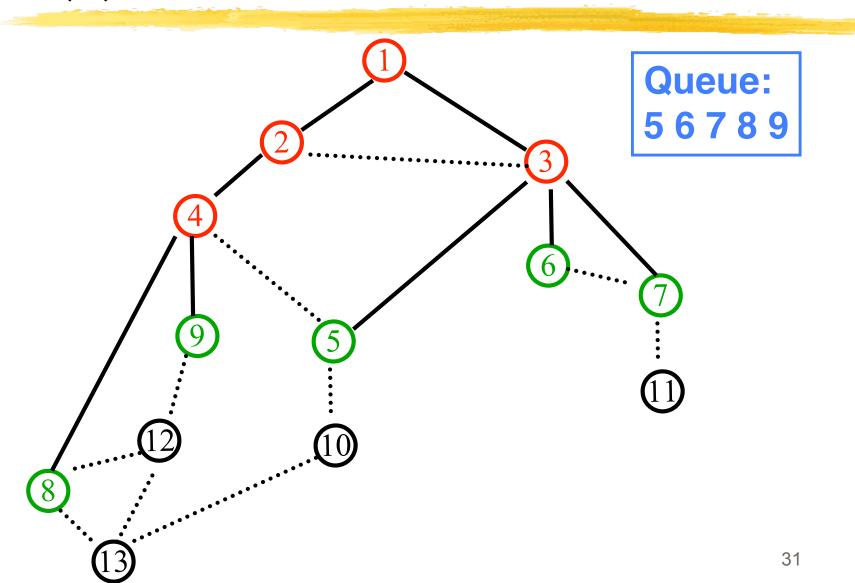


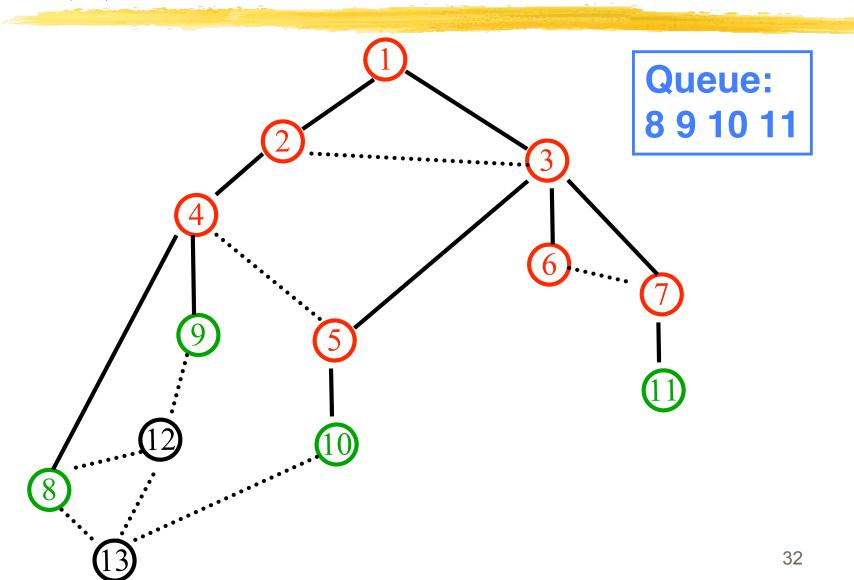


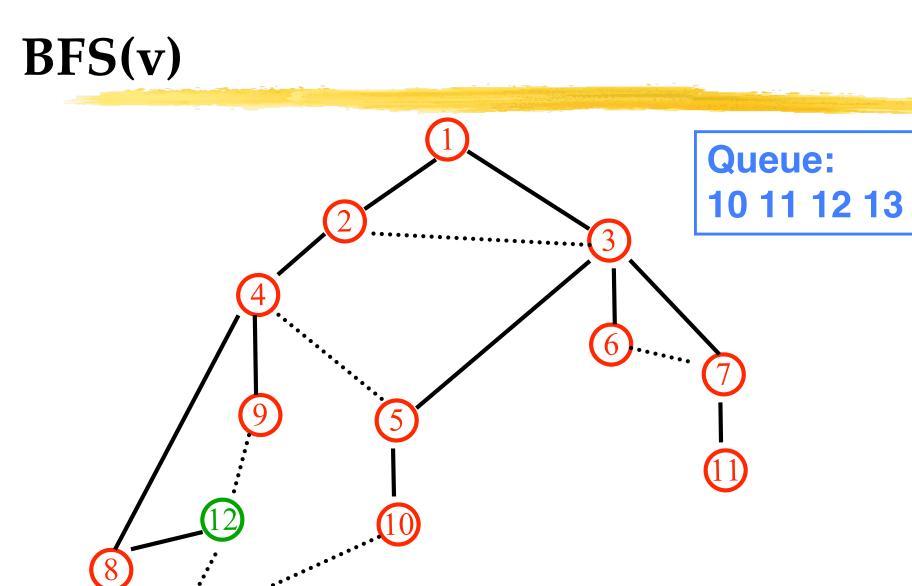


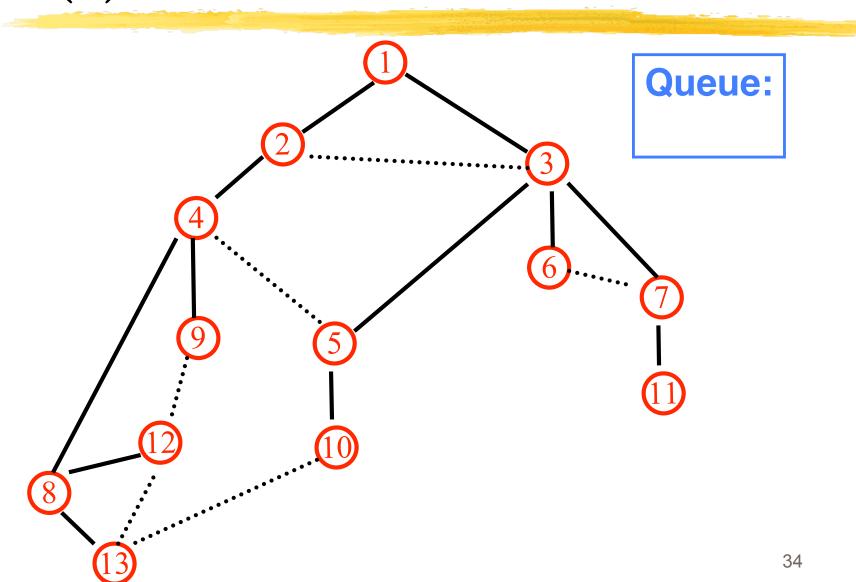












BFS analysis

Each edge is explored once from each end-point (at most)

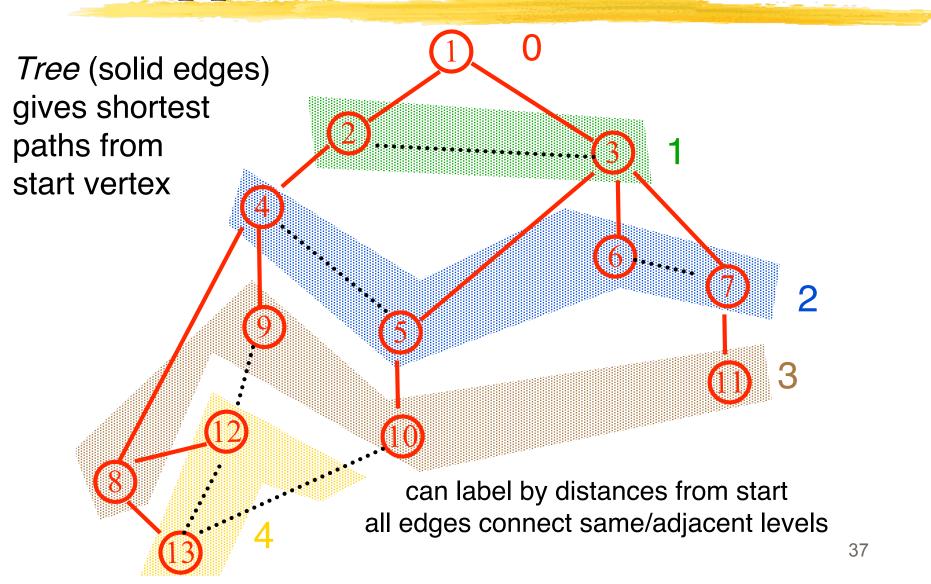
Each vertex is discovered by following a different edge

Total cost O(m) where m=# of edges

Properties of (Undirected) BFS(v)

- BFS(v) visits x if and only if there is a path in G from v to x.
- Edges into then-undiscovered vertices define a tree – the "breadth first spanning tree" of G
- Level i in this tree are exactly those vertices u such that the shortest path (in G, not just the tree) from the root v is of length i.
- All non-tree edges join vertices on the same or adjacent levels

BFS Application: Shortest Paths



Why fuss about trees?

- Trees are simpler than graphs
 - Ditto for algorithms on trees vs on graphs
- So, this is often a good way to approach a graph problem: find a "nice" tree in the graph, i.e., one such that non-tree edges have some simplifying structure
- E.g., BFS finds a tree s.t. level-jumps are minimized
- DFS (next) finds a different tree, but it also has interesting structure...

Graph Search Application: Connected Components

• Want to answer questions of the form:

given vertices u and v, is there a path from u to v?

Idea: create array A such that A[u] = smallest numbered vertex that is connected to u Q: Why not create 2-d array Path[u,v]?

question reduces to whether A[u]=A[v]?

Graph Search Application: Connected Components

I initial state: all v undiscovered for v=1 to n do if state(v) != fully-explored then BFS(v): setting A[u] ←v for each u found (and marking u discovered/fully-explored) endif endfor

Total cost: O(n+m)

- each edge is touched a constant number of times
- works also with DFS

Depth-First Search

- Follow the first path you find as far as you can go
- Back up to last unexplored edge when you reach a dead end, then go as far you can
- Naturally implemented using recursive calls or a stack