CSE 417: Algorithms and
Computational Complexity

Winter 2006
Graphs and Graph Algorithms
Larry Ruzzo

Objects & Relationships

The Kevin Bacon Game:

Actors

Two are related if they’ve been in a movie together
Exam Scheduling:

Classes

Two are related if they have students in common
Traveling Salesperson Problem:

Cities

Two are related if can travel directly between them

Graphs

An extremely important formalism for
representing (binary) relationships

Objects: “vertices”, aka “nodes”

Relationships between pairs: “edges”, aka
“arcs”

Formally, a graph G = (V, E) is a pair of
sets, V the vertices and E the edges

Undirected Graph G = (V,E)

N

Undirected Graph G = (V,E)

/
A N
@\
O—
® @
[®

Undirected Graph G = (V,E)

Undirected Graph G = (V,E)

Undirected Graph G = (V,E)

Graphs don’t live in Flatland

Geometrical drawing is mentally
convenient, but mathematically
irrelevant: 4 drawings, 1 graph.

A

@ 4

Directed Graph G = (V,E)

Directed Graph G = (V,E)
O

<~
] et \@
/
DNy o
s & ©

&

Directed Graph G = (V,E)
O

>
ot o
/@
\ .
5 & ©

&

Directed Graph G = (V,E)

0.
P -
3) @ 100p
J\ Y s
s b G

14

Directed Graph G = (V,E)

Specifying undirected
graphs as input

What are the vertices?

Explicitly list them:
{“A!!, “7!!, “3!!, “4!!}
What are the edges?

Either, set of edges A 7 3 4
UASHATAL43L ALY 7
Or, (symmetric) j
adjacency matrix: 700 0 0
311 0 0 1
411 1 1 O

16

Specifying directed
graphs as input

What are the vertices
Explicitly list them:
{“A!!, “7”, “3”, “4”}

What are the edges

Either, set of directed
edges: {(A,4), (4,7), (4,3),
(4,A), (A3)}

Or, (nonsymmetric)
adjacency matrix:

M LW I >

—_— O O Ol

—_— O O O

—_—O O = W

17

S OO = A

Vertices vs # Edges

Let G be an undirected graph with n vertices

and m edges

How are n and m related?

Since

every edge connects two different vertices (no loops),

and

no two edges connect the same two vertices (no

multi-edges),
It must be true that:

0 =<m = n(n-1)/2 = O(n?)

18

More Cool Graph Lingo

A graph is called sparse if m << n?, otherwise it
IS dense

Boundary is somewhat fuzzy; O(n) edges is certainly
sparse, Q(n?) edges is dense.

Sparse graphs are common in practice
E.g., all planar graphs are sparse

Q: which is a better run time, O(n+m) or O(n2)?

A: O(n+m) = O(n?), but n+m usually way better!

19

Representing Graph G = (V,E)

» internally, indp of input format

VertexsetV={v,, ..., V.} ¢ O—O

Adjacency Matrix A A7 3 4
Ali,j] = 1iff (v,v) EE 710 0 0 1
Space is n2 bits W PR

Advantages:
O(1) test for presence or absence of edges.

Disadvantages: inefficient for sparse graphs,
both in storage and access o

' m << N2

20

Representing Graph G=(V,E)
n vertices, m edges

Adjacency List: AN g e g e s g
O(n+m) words Vo 1i1> 37
Advantages: v 2 i[5 1467

Compact for
sparse graphs

Easily see all edges

Disadvantages
More complex data structure
no O(1) edge test

21

Representing Graph G=(V,E)
n vertices, m edges

. . < M i~ 145 7
Adjacency List: vy 2 A4 L1 7T
' 7
O(n+m) words Vo [1 i3 7
Vo[2 i 155 {56 7
Vv, [

Back- and cross pointers more work to build, but
allow easier traversal and deletion of edges, if
needed, (don’t bother if not)

22

Graph Traversal

Learn the basic structure of a graph

“Walk,” via edges, from a fixed starting
vertex v to all vertices reachable from v

Three states of vertices
undiscovered
discovered
fully-explored

23

Breadth-First Search

Completely explore the vertices in order of
their distance from v

Naturally implemented using a queue

24

BFS(v)

Global initialization: mark all vertices "undiscovered"

BFS(v)
mark v "discovered"
gqueue =V

while queue not empty
u = remove_first(queue)
for each edge {u,x}

iIf (x is undiscovered) Exercise: modify
mark x discovered code to number
append X on queue vertices & compute
mark u completed level numbers

25

BFS(v)

BFS(v)

Queue:

BFS(v)

Queue:
23

BFS(v)

Queue:
34

BFS(v)

BFS(v)

BFS(v)

Queue:
8910 11

BFS(v)

Queue:
101112 13

BFS(v)

BFS analysis

Each edge is explored once from each
end-point (at most)

Each vertex is discovered by following a
different edge

Total cost O(m) where m=# of edges

35

PI‘OPEI‘tiES of (Undirected) BFS(V)

BFS(v) visits x if and only if there is a path in G
from v to x.

Edges into then-undiscovered vertices define a
free — the "breadth first spanning tree" of G

Level i in this tree are exactly those vertices u
such that the shortest path (in G, not just the tree) from
the root v is of length i.

Allnon-tree edges join vertices on the same or
adjacent levels

36

BFS Application: Shortest Paths

Tree (solid edges)

giVGS shortest
paths from
start vertex

éan label by distances from start
all edges connect same/adjacent levels

37

Why fuss about trees?

Trees are simpler than graphs
Ditto for algorithms on trees vs on graphs

So, this is often a good way to approach a graph
problem: find a “nice” tree in the graph, i.e., one
such that non-tree edges have some simplifying
structure

E.g., BFS finds a tree s.t. level-jumps are
minimized

DFS (next) finds a different tree, but it also has
interesting structure...

38

Graph Search Application:
Connected Components

Want to answer questions of the form:

given vertices u and v, is there a
path from u to v?

Q: Why not
|dea: create array A such that create 2-d

arra
Alu] = smallest numbered vertex Pathy[u,v]?

that is connected to u
guestion reduces to whether A[u]=A[v]?

39

Graph Search Application:
Connected Components

Initial state: all v undiscovered
forv=1tondo
If state(v) != fully-explored then

BFS(v): setting A[u] <V for each u found
(and marking u discovered/fully-explored)
endif
endfor

Total cost: O(n+m)
each edge is touched a constant number of times
works also with DFS

40

Depth-First Search

Follow the first path you find as far as you
can go

Back up to last unexplored edge when
you reach a dead end, then go as far you
can

Naturally implemented using recursive
calls or a stack

41

