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Kevin Kline was in
“French Kiss” 
with Meg Ryan

Meg Ryan was in 
“Sleepless in Seattle”

with Tom Hanks

Tom Hanks was in
“Apollo 13” 

with Kevin Bacon
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Objects & Relationships

 The Kevin Bacon Game:
 Actors
 Two are related if they’ve been in a movie together

 Exam Scheduling:
 Classes
 Two are related if they have students in common

 Traveling Salesperson Problem:
 Cities
 Two are related if can travel directly between them
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Graphs

 An extremely important formalism for
representing (binary) relationships

 Objects: “vertices”, aka “nodes”
 Relationships between pairs: “edges”, aka

“arcs”
 Formally, a graph G = (V, E) is a pair of

sets, V the vertices and E the edges
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Graphs don’t live in Flatland

 Geometrical drawing is mentally
convenient, but mathematically
irrelevant: 4 drawings, 1 graph.
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Directed Graph G = (V,E)
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Specifying undirected
graphs as input

 What are the vertices?
 Explicitly list them:

{“A”, “7”, “3”, “4”}
 What are the edges?
 Either, set of edges

{{A,3}, {7,4}, {4,3}, {4,A}}
 Or, (symmetric)

adjacency matrix:

! 

A 7 3 4

A 0 0 1 1

7 0 0 0 1

3 1 0 0 1

4 1 1 1 0
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Specifying directed
graphs as input

 What are the vertices
 Explicitly list them:

{“A”, “7”, “3”, “4”}
 What are the edges
 Either, set of directed

edges:  {(A,4), (4,7), (4,3),
(4,A), (A,3)}

 Or, (nonsymmetric)
adjacency matrix:

! 

A 7 3 4

A 0 0 1 1

7 0 0 0 0

3 0 0 0 0

4 1 1 1 0
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# Vertices vs # Edges

 Let G be an undirected graph with n vertices
and m edges

 How are n and m related?
 Since
 every edge connects two different vertices (no loops),

and
 no two edges connect the same two vertices (no

multi-edges),
it must be true that:    0 ≤ m ≤ n(n-1)/2 = O(n2)
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More Cool Graph Lingo

 A graph is called sparse if m << n2, otherwise it
is dense
 Boundary is somewhat fuzzy; O(n) edges is certainly

sparse, Ω(n2) edges is dense.
 Sparse graphs are common in practice
 E.g., all planar graphs are sparse

 Q: which is a better run time, O(n+m) or O(n2)?
A: O(n+m) = O(n2), but n+m usually way better!
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Representing Graph  G = (V,E)

 Vertex set V = {v1, …, vn}
 Adjacency Matrix   A
 A[i,j] = 1 iff (vi,vj) ∈ E
 Space is n2 bits

 Advantages:
 O(1) test for presence or absence of edges.

 Disadvantages: inefficient for sparse graphs,
both in storage and access

m << n2

! 

A 7 3 4

A 0 0 1 1

7 0 0 0 1

3 1 0 0 1

4 1 1 1 0

A

743

internally, indp of input format
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Representing Graph  G=(V,E)
n vertices,  m edges

 Adjacency List:
 O(n+m) words

 Advantages:
 Compact for

sparse graphs
 Easily see all edges

 Disadvantages
 More complex data structure
 no O(1) edge test
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Representing Graph  G=(V,E)
n vertices,  m edges

 Adjacency List:
 O(n+m) words

 Back- and cross pointers more work to build, but
allow easier traversal and deletion of edges, if
needed,  (don’t bother if not)
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Graph Traversal

 Learn the basic structure of a graph
 “Walk,” via edges, from a fixed starting

vertex v to all vertices reachable from v

 Three states of vertices
 undiscovered
 discovered
 fully-explored
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Breadth-First Search

 Completely explore the vertices in order of
their distance from v

 Naturally implemented using a queue
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BFS(v)

Global initialization: mark all vertices "undiscovered"
BFS(v)

mark  v "discovered"
queue = v
while queue not empty

u = remove_first(queue)
for each edge {u,x}

if (x is undiscovered)
mark x discovered
append x on queue

mark u completed

Exercise: modify
code to number
vertices & compute
level numbers
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BFS(v)
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BFS analysis

 Each edge is explored once from each
end-point (at most)

 Each vertex is discovered by following a
different edge

 Total cost O(m)  where m=# of edges
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Properties of (Undirected) BFS(v)

 BFS(v) visits x if and only if there is a path in G
from v to x.

 Edges into then-undiscovered vertices define a
tree – the "breadth first spanning tree" of G

 Level i in this tree are exactly those vertices u
such that the shortest path (in G, not just the tree) from
the root v is of length i.

 All non-tree edges join vertices on the same or
adjacent levels
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BFS Application: Shortest Paths
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Why fuss about trees?

 Trees are simpler than graphs
 Ditto for algorithms on trees vs on graphs
 So, this is often a good way to approach a graph

problem: find a “nice” tree in the graph, i.e., one
such that non-tree edges have some simplifying
structure

 E.g., BFS finds a tree s.t. level-jumps are
minimized

 DFS (next) finds a different tree, but it also has
interesting structure…
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Graph Search Application:
Connected Components

 Want to answer questions of the form:
 given vertices u and v, is there a

path from u to v?

 Idea: create array A such that
A[u] = smallest numbered vertex 

 that is connected to u
 question reduces to whether A[u]=A[v]?

Q: Why not
create 2-d
array
Path[u,v]?
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Graph Search Application:
Connected Components

 initial state: all v undiscovered
for v=1 to n do                                          

if state(v) != fully-explored then
BFS(v): setting A[u] ←v for each u found
(and marking u discovered/fully-explored)

endif
endfor

 Total cost: O(n+m)
 each edge is touched a constant number of times
 works also with DFS
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Depth-First Search

 Follow the first path you find as far as you
can go

 Back up to last unexplored edge when
you reach a dead end, then go as far you
can

 Naturally implemented using recursive
calls or a stack


