CSE 417: Algorithms and Computational Complexity

Winter 2006
Graphs and Graph Algorithms
Larry Ruzzo

Graphs

II An extremely important formalism for representing (binary) relationships
\| Objects: "vertices", aka "nodes"
|| Relationships between pairs: "edges", aka "arcs"
|l Formally, a graph $G=(V, E)$ is a pair of sets, V the vertices and E the edges

Undirected Graph $G=(V, E)$

Undirected Graph $G=(V, E)$

Undirected Graph $G=(V, E)$

Undirected Graph $G=(V, E)$

Undirected Graph $G=(V, E)$

Directed Graph G = (V,E)

Graphs don't live in Flatland

10

Directed Graph G $=(\mathrm{V}, \mathrm{E})$

Directed Graph G $=(\mathrm{V}, \mathrm{E})$

(12)
(13)

Directed Graph G = (V,E)

Directed Graph G $=(\mathrm{V}, \mathrm{E})$

"loop"
"multi-
edge"

14

Specifying undirected graphs as input

What are the vertices?
|| Explicitly list them: \{"A", "7", " 3 ", " ""\}
What are the edges?
I Either, set of edges $\{\{A, 3\},\{7,4\},\{4,3\},\{4, A\}\}$
\| Or, (symmetric) adjacency matrix:

	A	7	3	4
A	0	0	1	1
7	0	0	0	1
3	1	0	0	1
4	1	1	1	0

Specifying directed

graphs as input

What are the vertices
| Explicitly list them: \{"A", "7", " 3 ", " 4 "\}
What are the edges

|| Either, set of directed edges: $\{(\mathrm{A}, 4),(4,7),(4,3)$, (4,A), (A, 3) \}
| Or, (nonsymmetric) adjacency matrix:

	A	7	3	4
A	0	0	1	1
7	0	0	0	0
3	0	0	0	0
4	1	1	1	0

More Cool Graph Lingo

\| A graph is called sparse if $m \ll n^{2}$, otherwise it is dense
|| Boundary is somewhat fuzzy; $O(n)$ edges is certainly sparse, $\Omega\left(n^{2}\right)$ edges is dense.

- Sparse graphs are common in practice
\| E.g., all planar graphs are sparse
\| Q : which is a better run time, $\mathrm{O}(\mathrm{n}+\mathrm{m})$ or $\mathrm{O}\left(\mathrm{n}^{2}\right)$?
A: $O(n+m)=O\left(n^{2}\right)$, but $n+m$ usually way better!

\# Vertices vs \# Edges

- Let G be an undirected graph with n vertices and m edges
- How are n and m related?

1 Since
\| every edge connects two different vertices (no loops), and
\| no two edges connect the same two vertices (no multi-edges),
it must be true that:

```
0\leqm\leqn(n-1)/2=O(n2)
```

Representing Graph $G=(\mathrm{V}, \mathrm{E})$
internally, indp of input format

- Vertex set $\mathrm{V}=\left\{\mathrm{v}_{1}, \ldots, \mathrm{~V}_{\mathrm{n}}\right\}$

- Adjacency Matrix A

II $A[i, j]=1$ iff $\left(v_{i}, v_{j}\right) \in E$
1 Space is n^{2} bits

$$
\begin{array}{c|cccc}
& A & 7 & 3 & 4 \\
\hline A & 0 & 0 & 1 & 1 \\
7 & 0 & 0 & 0 & 1 \\
3 & 1 & 0 & 0 & 1 \\
4 & 1 & 1 & 1 & 0
\end{array}
$$

- Advantages:

II $\mathrm{O}(1)$ test for presence or absence of edges.

- Disadvantages: inefficient for sparse graphs, both in storage and access

Representing Graph $G=(V, E)$

 n vertices, m edges- Adjacency List:
\| $\mathrm{O}(\mathrm{n}+\mathrm{m})$ words
- Advantages:
\| Compact for sparse graphs
|| Easily see all edges

- Disadvantages
|| More complex data structure
|| no O(1) edge test

Graph Traversal

- Learn the basic structure of a graph
- "Walk," via edges, from a fixed starting vertex v to all vertices reachable from v
\| Three states of vertices
$\|$ undiscovered
|| discovered
|| fully-explored

Representing Graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ n vertices, m edges

- Adjacency List:

II O(n+m) words

- Back- and cross pointers more work to build, but allow easier traversal and deletion of edges, if needed, (don't bother if not)

Breadth-First Search

- Completely explore the vertices in order of their distance from v

Naturally implemented using a queue

BFS(v)

Global initialization: mark all vertices "undiscovered" BFS(v)
mark v "discovered"
queue = v
while queue not empty
$u=$ remove_first(queue)
for each edge $\{u, x\}$
if (x is undiscovered) mark x discovered append x on queue mark u completed

Exercise: modify code to number vertices \& compute level numbers

BFS(v)

BFS(v)

BFS(v)

BFS(v)

Properties of (Undirected) BFS(v)

- BFS(v) visits x if and only if there is a path in G from v to x.
- Edges into then-undiscovered vertices define a tree - the "breadth first spanning tree" of G
$\|$ Level i in this tree are exactly those vertices u such that the shortest path (in G, not just the tree) from the root v is of length i.
|l All non-tree edges join vertices on the same or adjacent levels

BFS analysis

Each edge is explored once from each end-point (at most)

- Each vertex is discovered by following a different edge

Total cost $O(m)$ where $m=\#$ of edges

BFS Application: Shortest Paths

Tree (solid edges) gives shortest paths from start vertex

can label by distances from start all edges connect same/adjacent levels

Why fuss about trees?

II Trees are simpler than graphs

- Ditto for algorithms on trees vs on graphs
I. So, this is often a good way to approach a graph problem: find a "nice" tree in the graph, i.e., one such that non-tree edges have some simplifying structure
- E.g., BFS finds a tree s.t. level-jumps are minimized
II DFS (next) finds a different tree, but it also has interesting structure...

Graph Search Application:

Connected Components

- initial state: all v undiscovered

for $\mathrm{v}=1$ to n do

if state(v) != fully-explored then
$B F S(v)$: setting $A[u] \leftarrow v$ for each u found (and marking u discovered/fully-explored) endif
endfor

- Total cost: O(n+m)
| each edge is touched a constant number of times
\| works also with DFS

Graph Search Application:
 Connected Components

- Want to answer questions of the form:
$\|$ given vertices u and v, is there a path from u to v ?

II Idea: create array A such that
$\mathrm{A}[u]=$ smallest numbered vertex that is connected to u
|| question reduces to whether $\mathrm{A}[\mathrm{u}]=\mathrm{A}[\mathrm{v}]$?

Depth-First Search

- Follow the first path you find as far as you can go
- Back up to last unexplored edge when you reach a dead end, then go as far you can
- Naturally implemented using recursive calls or a stack

