CSE 417: Algorithms and Computational Complexity 2: Analysis

Winter 2006 Larry Ruzzo

Efficiency

- Our correct TSP algorithm was incredibly slow
- Basically slow no matter what computer you have
- We would like a general theory of "efficiency" that is
 - Simple
 - Relatively independent of changing technology
 - But still useful for prediction "theoretically bad" algorithms should be bad in practice and vice versa (usually)

Measuring efficiency: The RAM model

- RAM = Random Access Machine
- Time ~ # of instructions executed in an ideal assembly language
 - each simple operation (+,*,-,=,if,call) takes one time step
 - each memory access takes one time step
- No bound on the memory size

We left out things but...

- Things we've dropped
 - memory hierarchy
 - disk, caches, registers have many orders of magnitude differences in access time
 - not all instructions take the same time in practice
- However,
 - the RAM model is useful for designing algorithms and measuring their efficiency
 - one can usually tune implementations so that the hierarchy etc. is not a huge factor

Complexity analysis

- Problem size n
 - Worst-case complexity: max # steps algorithm takes on any input of size n
 - Best-case complexity: min # steps algorithm takes on any input of size n
 - Average-case complexity: avg # steps algorithm takes on inputs of size n

Pros and cons:

Best-case

- unrealistic overselling
- can "cheat": tune algorithm for one easy input
- Worst-case
 - a fast algorithm has a comforting guarantee
 - no way to cheat by hard-coding special cases
 - maybe too pessimistic
- Average-case
 - over what probability distribution? (different people may have different "average" problems)
 - analysis hard

Why Worst-Case Analysis?

- Appropriate for time-critical applications, e.g. avionics
- Unlike Average-Case, no debate about what the right definition is
- Analysis often easier
- Result is often representative of "typical" problem instances
- Of course there are exceptions...

General Goals

- Characterize *growth rate* of run time as a function of problem size, up to a *constant factor*
- Why not try to be more precise?
 - Technological variations (computer, compiler, OS, ...) easily 10x or more
 - Being more precise is a ton of work
 - A key question is "scale up": if I can afford to do it today, how much longer will it take when my business problems are twice as large? (E.g. today: cn², next year: c(2n)² = 4cn²: 4 x longer.)

Complexity

- The complexity of an algorithm associates a number T(n), the best/worst/average-case time the algorithm takes, with each problem size n.
- Mathematically,
 - $T: \mathbb{N}^+ \rightarrow \mathbb{R}^+$
 - that is T is a function that maps positive integers giving problem size to positive real numbers giving number of steps.

Complexity

10

O-notation etc

• Given two functions **f** and $g: N \rightarrow R$

- f(n) is O(g(n)) iff there is a constant c>0 so that f(n) is eventually always ≤ c g(n)

- f(n) is $\Omega(g(n))$ iff there is a constant c>0 so that f(n) is eventually always $\geq c g(n)$

- f(n) is $\Theta(g(n))$ iff there is are constants c_1 and $c_2 > 0$ so that eventually always $c_1g(n) \le f(n) \le c_2g(n)$

Examples

- 10n²-16n+100 is $O(n^2)$ also $O(n^3)$ - 10n²-16n+100 $\leq 11n^2$ for all $n \geq 10$
- 10n²-16n+100 is $\Omega(n^2)$ also $\Omega(n)$
 - $-10n^2-16n+100 \ge 9n^2$ for all $n \ge 16$
 - Therefore also $10n^2$ -16n+100 is $\Theta(n^2)$
- 10n²-16n+100 is not O(n) also not Ω(n³)

Properties

- Transitivity.
 - If f = O(g) and g = O(h) then f = O(h).
 - If $f = \Omega(g)$ and $g = \Omega(h)$ then $f = \Omega(h)$.
 - If $f = \Theta(g)$ and $g = \Theta(h)$ then $f = \Theta(h)$.
- Additivity.
 - If f = O(h) and g = O(h) then f + g = O(h).
 - If $f = \Omega(h)$ and $g = \Omega(h)$ then $f + g = \Omega(h)$.
 - If $f = \Theta(h)$ and g = O(h) then $f + g = \Theta(h)$.

Asymptotic Bounds for Some Common Functions

- Polynomials: $a_0 + a_1n + ... + a_dn^d$ is $\Theta(n^d)$ if $a_d > 0$
- Logarithms: $O(\log_a n) = O(\log_b n)$ for any constants a,b > 0
- Logarithms: For all x > 0, log $n = O(n^x)$

log grows slower than every polynomial

"One-Way Equalities"

- "2 + 2 is 4" vs 2 + 2 = 4 vs 4 = 2 + 2
- "Every dog is a mammal" vs
 "Every mammal is a dog"
- $2n^2 + 5 n \text{ is } O(n^3)$ vs $2n^2 + 5 n = O(n^3)$ vs $O(n^3) = 2n^2 + 5 n$ FALSE
- OK to put big-O in R.H.S. of equality, but not left. Better notation: T(n) ∈ O(f(n)).

Working with O- Ω - Θ notation

Claim: For any a, and any b>0, $(n+a)^{b}$ is $\Theta(n^{b})$ $-(n+a)^{b} \leq (2n)^{b}$ for $n \ge |a|$ $= 2^{b}n^{b}$ $= cn^{b}$ for $c = 2^{b}$ so $(n+a)^{b}$ is $O(n^{b})$ $(n+a)^{b} \ge (n/2)^{b}$ for $n \ge 2|a|$ (even if a <0) $= 2^{-b}n^{b}$ for c' = 2^{-b} = c'nso $(n+a)^{b}$ is $\Omega(n^{b})$

Working with $O-\Omega-\Theta$ notation Claim: For any a, b>1 $\log_a n$ is $\Theta(\log_b n)$ $\log_a b = x$ means $a^x = b$ $a^{\log_a b} = b$ $(a^{\log_a b})^{\log_b n} = b^{\log_b n} = n$ $(\log_a b)(\log_b n) = \log_a n$

 $c \log_b n = \log_a n$ for the constant $c = \log_a b$ So:

$$\log_b n = \Theta(\log_a n) = \Theta(\log n)$$

Domination

- f(n) is o(g(n)) iff lim_{n→∞} f(n)/g(n)=0

 that is g(n) dominates f(n)
- If $\alpha \leq \beta$ then \mathbf{n}^{α} is $\mathbf{O}(\mathbf{n}^{\beta})$
- If $\alpha < \beta$ then \mathbf{n}^{α} is $\mathbf{o}(\mathbf{n}^{\beta})$
- Note:
 if f(n) is Θ(g(n)) then it cannot be o(g(n))

Working with little-o

$$\lim_{n \to \infty} \frac{n^2}{n^3} = \lim_{n \to \infty} \frac{1}{n} = 0$$

• $n^3 = o(e^n)$ [Use L'Hospital's rule 3 times]:

$$\lim_{n \to \infty} \frac{n^3}{e^n} = \lim_{n \to \infty} \frac{3n^2}{e^n} = \lim_{n \to \infty} \frac{6n}{e^n} = \lim_{n \to \infty} \frac{6}{e^n} = 0$$

20

 $f(n \log n) \neq \Theta(n^a)$ for any *a*, either, but at least it's simpler.

A Possible Misunderstanding?

- We have looked at
 - type of complexity analysis
 - worst-, best-, average-case
 - types of function bounds
 - Ο, Ω, Θ

Insertion Sort:

 $\Omega(n^2)$ (worst case)

O(n) (best case)

- These two considerations are independent of each other
 - one can do any type of function bound with any type of complexity analysis

Asymptotic Bounds for Some Common Functions

 Exponentials.
 For all r > 1 and all d > 0, n^d = O(rⁿ).

> every exponential grows faster than every polynomial

Polynomial time

 Running time is O(n^d) for some constant d independent of the input size n.

Why It Matters

Table 2.1 The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second. In cases where the running time exceeds 10²⁵ years, we simply record the algorithm as taking a very long time.

	n	$n \log_2 n$	<i>n</i> ²	n ³	1.5 ⁿ	2 ⁿ	n!
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10 ²⁵ years
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	10 ¹⁷ years	very long
<i>n</i> = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very long
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very long
<i>n</i> = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

Geek-speak Faux Pas du Jour

- "Any comparison-based sorting algorithm requires at least O(n log n) comparisons."
 - Statement doesn't "type-check."
 - Use Ω for lower bounds.