
1

CSE 417: Algorithms and
Computational Complexity

2: Analysis

Winter 2006
Larry Ruzzo

2

Efficiency

• Our correct TSP algorithm was incredibly slow
• Basically slow no matter what computer you

have
• We would like a general theory of “efficiency”

that is
– Simple
– Relatively independent of changing technology
– But still useful for prediction - “theoretically bad”

algorithms should be bad in practice and vice versa
(usually)

3

Measuring efficiency:
The RAM model

• RAM = Random Access Machine

• Time ≈ # of instructions executed in an
ideal assembly language
– each simple operation (+,*,-,=,if,call) takes

one time step
– each memory access takes one time step

• No bound on the memory size

4

We left out things but...

• Things we’ve dropped
– memory hierarchy

• disk, caches, registers have many orders of magnitude
differences in access time

– not all instructions take the same time in practice
• However,

– the RAM model is useful for designing algorithms
and measuring their efficiency

– one can usually tune implementations so that the
hierarchy etc. is not a huge factor

5

Complexity
analysis
• Problem size n

– Worst-case complexity: max # steps
algorithm takes on any input of size n

– Best-case complexity: min # steps
algorithm takes on any input of size n

– Average-case complexity: avg # steps
algorithm takes on inputs of size n

T

n

6

Pros and cons:

• Best-case
– unrealistic overselling
– can “cheat”: tune algorithm for one easy input

• Worst-case
– a fast algorithm has a comforting guarantee
– no way to cheat by hard-coding special cases
– maybe too pessimistic

• Average-case
– over what probability distribution? (different

people may have different “average” problems)
– analysis hard

7

Why Worst-Case Analysis?

• Appropriate for time-critical applications,
e.g. avionics

• Unlike Average-Case, no debate about
what the right definition is

• Analysis often easier
• Result is often representative of

"typical" problem instances
• Of course there are exceptions…

8

General Goals

• Characterize growth rate of run time as a
function of problem size, up to a constant
factor

• Why not try to be more precise?
– Technological variations (computer, compiler, OS,

…) easily 10x or more
– Being more precise is a ton of work
– A key question is “scale up”: if I can afford to do it

today, how much longer will it take when my
business problems are twice as large? (E.g.
today: cn2, next year: c(2n)2 = 4cn2 : 4 x longer.)

9

Complexity

• The complexity of an algorithm associates a
number T(n), the best/worst/average-case
time the algorithm takes, with each problem
size n.

• Mathematically,
– T: N+ → R+

– that is T is a function that maps positive
integers giving problem size to positive real
numbers giving number of steps.

10

Complexity

Problem size

Ti
m

e

T(n)

11

Complexity

Problem size

Ti
m

e

T(n)

n log2n

2n log2n

12

O-notation etc
• Given two functions f and g:N→R

– f(n) is O(g(n)) iff there is a constant c>0 so
 that f(n) is eventually always ≤ c g(n)

– f(n) is Ω(g(n)) iff there is a constant c>0 so
 that f(n) is eventually always ≥ c g(n)

– f(n) is Θ(g(n)) iff there is are constants c1
 and c2>0 so that eventually

 always c1g(n) ≤ f(n) ≤ c2g(n)

13

Examples

• 10n2-16n+100 is O(n2) also O(n3)
– 10n2-16n+100 ≤ 11n2 for all n ≥ 10

• 10n2-16n+100 is Ω(n2) also Ω(n)
– 10n2-16n+100 ≥ 9n2 for all n ≥16
– Therefore also 10n2-16n+100 is Θ(n2)

• 10n2-16n+100 is not O(n) also not Ω(n3)

14

Properties

• Transitivity.
– If f = O(g) and g = O(h) then f = O(h).
– If f = Ω(g) and g = Ω(h) then f = Ω(h).
– If f = Θ(g) and g = Θ(h) then f = Θ(h).

• Additivity.
– If f = O(h) and g = O(h) then f + g = O(h).
– If f = Ω(h) and g = Ω(h) then f + g = Ω(h).
– If f = Θ(h) and g = O(h) then f + g = Θ(h).

15

Asymptotic Bounds for Some
Common Functions

• Polynomials:
a0 + a1n + … + adnd is Θ(nd) if ad > 0

• Logarithms:
O(loga n) = O(log b n) for any constants a,b > 0

• Logarithms:
For all x > 0, log n = O(nx)

log grows slower
than every
polynomial

16

“One-Way Equalities”

• “2 + 2 is 4” vs 2 + 2 = 4 vs 4 = 2 + 2
• “Every dog is a mammal” vs

“Every mammal is a dog”
• 2n2 + 5 n is O(n3) vs

2n2 + 5 n = O(n3) vs
O(n3) = 2n2 + 5 n FALSE

• OK to put big-O in R.H.S. of equality, but not
left. Better notation: T(n) ∈ O(f(n)).

17

Working with O-Ω-Θ notation

Claim: For any a, and any b>0, (n+a)b is Θ(nb)
– (n+a)b ≤ (2n)b for n ≥ |a|

= 2bnb

= cnb for c = 2b

so (n+a)b is O(nb)

– (n+a)b ≥ (n/2)b for n ≥ 2|a| (even if a <0)
= 2-bnb

= c’n for c’ = 2-b

so (n+a)b is Ω(nb)

18

Working with O-Ω-Θ notation

Claim: For any a, b>1 logan is Θ(logbn)

!

log
a
b = x means ax = b

a
log

a
b

= b

(alog
a
b)log

b
n

= b
log

b
n

= n

(log
a
b)(log

b
n) = log

a
n

c log
b
n = log

a
n for the constant c = log

a
b

So :

log
b
n ="(log

a
n) ="(logn)

19

Domination

• f(n) is o(g(n)) iff limn→∞ f(n)/g(n)=0
– that is g(n) dominates f(n)

• If α ≤ β then nα is O(nβ)

• If α < β then nα is o(nβ)

• Note:
if f(n) is Θ(g(n)) then it cannot be o(g(n))

20

Working with little-o

• n2 = o(n3) [Use algebra]:

• n3 = o(en) [Use L’Hospital’s rule 3 times]:

!

lim
n"#

n
2

n
3

= lim
n"#

1

n
= 0

!

lim
n"#

n
3

e
n

= lim
n"#

3n
2

e
n

= lim
n"#

6n

e
n

= lim
n"#

6

e
n

= 0

21

Big-Theta, etc. not always “nice”

!

f (n) =
n
2
, n even

n, n odd

"

$

%
&
'

f(n) ≠ Θ(na) for any a.

Fortunately, such
nasty cases are rare

f(n log n) ≠ Θ(na) for any a, either, but at least it’s simpler.

22

A Possible Misunderstanding?

• We have looked at
– type of complexity analysis

• worst-, best-, average-case
– types of function bounds

• O, Ω, Θ

• These two considerations are independent of
each other
– one can do any type of function bound with any

type of complexity analysis

Insertion Sort:
Ω(n2) (worst case)

O(n) (best case)

23

Asymptotic Bounds for Some
Common Functions

• Exponentials.
For all r > 1
and all d > 0,
nd = O(rn).

every exponential
grows faster than
every polynomial

24

Polynomial time

• Running time is O(nd) for some constant
d independent of the input size n.

25

Why It Matters

26

Geek-speak Faux Pas du Jour

• “Any comparison-based sorting
algorithm requires at least O(n log n)
comparisons.”
– Statement doesn't "type-check."
– Use Ω for lower bounds.

