CSE 417: Algorithms and Computational Complexity

 2: AnalysisWinter 2006
Larry Ruzzo

Efficiency

- Our correct TSP algorithm was incredibly slow
- Basically slow no matter what computer you have
- We would like a general theory of "efficiency" that is
- Simple
- Relatively independent of changing technology
- But still useful for prediction - "theoretically bad" algorithms should be bad in practice and vice versa (usually)

Measuring efficiency: The RAM model

- RAM = Random Access Machine
- Time $\approx \#$ of instructions executed in an ideal assembly language
- each simple operation (+,*,-,=,if,call) takes one time step
- each memory access takes one time step
- No bound on the memory size

We left out things but...

- Things we've dropped
- memory hierarchy
- disk, caches, registers have many orders of magnitude differences in access time
- not all instructions take the same time in practice
- However,
- the RAM model is useful for designing algorithms and measuring their efficiency
- one can usually tune implementations so that the hierarchy etc. is not a huge factor

Complexity analysis

- Problem size n

- Worst-case complexity: max \# steps algorithm takes on any input of size n
- Best-case complexity: min \# steps algorithm takes on any input of size n
- Average-case complexity: avg \# steps algorithm takes on inputs of size n

Pros and cons:

- Best-case
- unrealistic overselling
- can "cheat": tune algorithm for one easy input
- Worst-case
- a fast algorithm has a comforting guarantee
- no way to cheat by hard-coding special cases
- maybe too pessimistic
- Average-case
- over what probability distribution? (different people may have different "average" problems)
- analysis hard

Why Worst-Case Analysis?

- Appropriate for time-critical applications, e.g. avionics
- Unlike Average-Case, no debate about what the right definition is
- Analysis often easier
- Result is often representative of "typical" problem instances
- Of course there are exceptions...

General Goals

- Characterize growth rate of run time as a function of problem size, up to a constant factor
- Why not try to be more precise?
- Technological variations (computer, compiler, OS, ...) easily 10x or more
- Being more precise is a ton of work
- A key question is "scale up": if I can afford to do it today, how much longer will it take when my business problems are twice as large? (E.g. today: cn^{2}, next year: $\mathrm{c}(2 \mathrm{n})^{2}=4 \mathrm{cn}^{2}: 4 \mathrm{x}$ longer.)

Complexity

- The complexity of an algorithm associates a number T(n), the best/worst/average-case time the algorithm takes, with each problem size n .
- Mathematically,
$-\mathrm{T}: \mathbf{N}^{+} \rightarrow \mathbf{R}^{+}$
- that is T is a function that maps positive integers giving problem size to positive real numbers giving number of steps.

Complexity

Complexity

O-notation etc

- Given two functions f and $g: N \rightarrow R$
$-\mathbf{f}(\mathbf{n})$ is $\mathbf{O (g (n))}$ iff there is a constant $\mathbf{c > 0}$ so that $f(\mathbf{n})$ is eventually always $\leq \mathbf{c} \mathbf{g (n)}$
$-\mathbf{f}(\mathbf{n})$ is $\Omega(\mathbf{g}(\mathbf{n})$) iff there is a constant $\mathbf{c}>0$ so that $\mathbf{f}(\mathbf{n})$ is eventually always $\geq \mathbf{c} \mathbf{g}(\mathbf{n})$
- $\mathbf{f}(\mathbf{n})$ is $\Theta(\mathbf{g}(\mathbf{n}))$ iff there is are constants \mathbf{c}_{1} and $\mathrm{c}_{2}>0$ so that eventually always $c_{1} g(n) \leq f(n) \leq c_{2} g(n)$

Examples

- $10 n^{2}-16 n+100$ is $\mathbf{O}\left(n^{2}\right)$ also $O\left(n^{3}\right)$
$-10 n^{2}-16 n+100 \leq 11 n^{2}$ for all $n \geq 10$
- $10 n^{2}-16 n+100$ is $\Omega\left(n^{2}\right)$ also $\Omega(n)$
$-10 n^{2}-16 n+100 \geq 9 n^{2}$ for all $n \geq 16$
- Therefore also $10 n^{2}-16 n+100$ is $\Theta\left(n^{2}\right)$
- $10 n^{2}-16 n+100$ is not $O(n)$ also not $\Omega\left(n^{3}\right)$

Properties

- Transitivity.
- If $f=O(g)$ and $g=O(h)$ then $f=O(h)$.
- If $f=\Omega(g)$ and $g=\Omega(h)$ then $f=\Omega(h)$.
- If $f=\Theta(g)$ and $g=\Theta(h)$ then $f=\Theta(h)$.
- Additivity.
- If $f=O(h)$ and $g=O(h)$ then $f+g=O(h)$.
- If $\mathrm{f}=\Omega(\mathrm{h})$ and $\mathrm{g}=\Omega(\mathrm{h})$ then $\mathrm{f}+\mathrm{g}=\Omega(\mathrm{h})$.
- If $f=\Theta(h)$ and $g=O(h)$ then $f+g=\Theta(h)$.

Asymptotic Bounds for Some Common Functions

- Polynomials:
$a_{0}+a_{1} n+\ldots+a_{d} n^{d}$ is $\Theta\left(n^{d}\right)$ if $a_{d}>0$
- Logarithms:
$\mathrm{O}\left(\log _{\mathrm{a}} \mathrm{n}\right)=\mathrm{O}\left(\log _{\mathrm{b}} \mathrm{n}\right)$ for any constants $\mathrm{a}, \mathrm{b}>0$
- Logarithms:

For all $x>0, \quad \log n=O\left(n^{x}\right)$

"One-Way Equalities"

- " $2+2$ is 4 " vs $2+2=4$ vs $4=2+2$
- "Every dog is a mammal" vs
"Every mammal is a dog"
- $2 n^{2}+5 n$ is $O\left(n^{3}\right)$
vs
$2 n^{2}+5 n=O\left(n^{3}\right) \quad$ vs
$O\left(n^{3}\right)=2 n^{2}+5 n$
FALSE
- OK to put big-O in R.H.S. of equality, but not left. Better notation: $T(n) \in O(f(n))$.

Working with $\mathrm{O}-\Omega-\Theta$ notation

Claim: For any a, and any $b>0,(n+a)^{b}$ is $\Theta\left(n^{b}\right)$

$$
\begin{aligned}
-(n+a)^{b} & \leq(2 n)^{b} & & \text { for } n \geq|a| \\
& =2^{b} n^{b} & & \\
& =c^{b} & & \text { for } c=2^{b} \\
\text { so }(n+a)^{b} & \text { is } O\left(n^{b}\right) & & \\
& & & \\
-(n+a)^{b} & \geq(n / 2)^{b} & & \text { for } n \geq 2|a| \text { (even if } a<0) \\
& =2^{-b} n^{b} & & \\
& =c^{\prime} n & & \text { for } c^{\prime}=2^{-b}
\end{aligned}
$$

Working with $\mathrm{O}-\Omega-\Theta$ notation

Claim: For any $a, b>1 \quad \log _{\mathrm{a}} \mathrm{n}$ is $\Theta\left(\log _{\mathrm{b}} \mathrm{n}\right)$

$$
\begin{aligned}
& \log _{a} b=x \text { means } a^{x}=b \\
& a^{\log _{a} b}=b \\
& \left(a^{\log _{a} b}\right)^{\log _{b} n}=b^{\log _{b} n}=n \\
& \left(\log _{a} b\right)\left(\log _{b} n\right)=\log _{a} n \\
& c \log _{b} n=\log _{a} n \text { for the constant } \mathrm{c}=\log _{a} b \\
& \text { So : } \\
& \log _{b} n=\Theta\left(\log _{a} n\right)=\Theta(\log n)
\end{aligned}
$$

Domination

- $f(\mathbf{n})$ is $O(\mathbf{g}(\mathbf{n}))$ iff $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{f}(\mathrm{n}) / \mathbf{g}(\mathbf{n})=\mathbf{0}$
- that is $\mathbf{g}(\mathbf{n})$ dominates $\mathbf{f}(\mathbf{n})$
- If $\alpha \leq \beta$ then \mathbf{n}^{α} is $\mathbf{O}\left(\mathbf{n}^{\beta}\right)$
- If $\alpha<\beta$ then \mathbf{n}^{α} is $\mathbf{O}\left(\mathbf{n}^{\beta}\right)$
- Note:
if $\mathbf{f}(\mathbf{n})$ is $\Theta(\mathbf{g}(\mathbf{n}))$ then it cannot be $\mathbf{O}(\mathbf{g}(\mathbf{n}))$

Working with little-o

- $\mathrm{n}^{2}=\mathrm{o}\left(\mathrm{n}^{3}\right)$ [Use algebra]:

$$
\lim _{n \rightarrow \infty} \frac{n^{2}}{n^{3}}=\lim _{n \rightarrow \infty} \frac{1}{n}=0
$$

- $\mathrm{n}^{3}=\mathrm{o}\left(\mathrm{e}^{\mathrm{n}}\right)$ [Use L'Hospital's rule 3 times]:

$$
\lim _{\mathrm{n} \rightarrow \infty} \frac{n^{3}}{e^{n}}=\lim _{\mathrm{n} \rightarrow \infty} \frac{3 n^{2}}{e^{n}}=\lim _{\mathrm{n} \rightarrow \infty} \frac{6 n}{e^{n}}=\lim _{\mathrm{n} \rightarrow \infty} \frac{6}{e^{n}}=0
$$

Big-Theta, etc. not always "nice"

$f(n)=\left\{\begin{array}{cc}n^{2}, & n \text { even } \\ n, & n \text { odd }\end{array}\right\}$
$f(n) \neq \Theta\left(n^{a}\right)$ for any a.
Fortunately, such nasty cases are rare
$f(n \log n) \neq \Theta\left(n^{a}\right)$ for any a, either, but at least it's simpler.

A Possible Misunderstanding?

- We have looked at
- type of complexity analysis
- worst-, best-, average-case
- types of function bounds

Insertion Sort:
$\Omega\left(\mathrm{n}^{2}\right)$ (worst case)
$\mathrm{O}(\mathrm{n})$ (best case)

- O, Ω, Θ
- These two considerations are independent of each other
- one can do any type of function bound with any type of complexity analysis

Asymptotic Bounds for Some Common Functions

- Exponentials.

For all r> 1
and all d>0, $n^{d}=O\left(r^{n}\right)$.

Polynomial time

- Running time is $\mathrm{O}\left(\mathrm{n}^{\mathrm{d}}\right)$ for some constant d independent of the input size n.

Why It Matters

Table 2.1 The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second. In cases where the running time exceeds 10^{25} years, we simply record the algorithm as taking a very long time.

	n	$n \log _{2} n$	n^{2}	n^{3}	1.5^{n}	2^{n}	$n!$
$n=10$	$<1 \mathrm{sec}$	4 sec					
$n=30$	$<1 \mathrm{sec}$	18 min	10^{25} years				
$n=50$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	11 min	36 years	very long
$n=100$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	1 sec	12,892 years	10^{17} years	very long
$n=1,000$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	1 sec	18 min	very long	very long	very long
$n=10,000$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	2 min	12 days	very long	very long	very long
$n=100,000$	$<1 \mathrm{sec}$	2 sec	3 hours	32 years	very long	very long	very long
$n=1,000,000$	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

Geek-speak Faux Pas du Jour

- "Any comparison-based sorting algorithm requires at least $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ comparisons."
- Statement doesn't "type-check."
- Use Ω for lower bounds.

