CSE 417: Algorithms and Computational Complexity

2: Analysis

Winter 2006 Larry Ruzzo

1

Efficiency

- Our correct TSP algorithm was incredibly slow
- Basically slow no matter what computer you have
- We would like a general theory of "efficiency" that is
 - Simple
 - Relatively independent of changing technology
 - But still useful for prediction "theoretically bad" algorithms should be bad in practice and vice versa (usually)

2

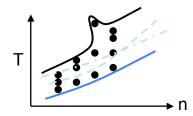
Measuring efficiency: The RAM model

- RAM = Random Access Machine
- Time ≈ # of instructions executed in an ideal assembly language
 - each simple operation (+,*,-,=,if,call) takes one time step
 - each memory access takes one time step
- · No bound on the memory size

We left out things but...

- Things we've dropped
 - memory hierarchy
 - disk, caches, registers have many orders of magnitude differences in access time
 - not all instructions take the same time in practice
- However,
 - the RAM model is useful for designing algorithms and measuring their efficiency
 - one can usually tune implementations so that the hierarchy etc. is not a huge factor

Complexity analysis



- Problem size n
 - Worst-case complexity: max # steps algorithm takes on any input of size n
 - Best-case complexity: min # steps algorithm takes on any input of size n
 - Average-case complexity: avg # steps algorithm takes on inputs of size n

5

Pros and cons:

- Best-case
 - unrealistic overselling
 - can "cheat": tune algorithm for one easy input
- Worst-case
 - a fast algorithm has a comforting guarantee
 - no way to cheat by hard-coding special cases
 - maybe too pessimistic
- Average-case
 - over what probability distribution? (different people may have different "average" problems)
 - analysis hard

6

Why Worst-Case Analysis?

- Appropriate for time-critical applications, e.g. avionics
- Unlike Average-Case, no debate about what the right definition is
- Analysis often easier
- Result is often representative of "typical" problem instances
- Of course there are exceptions...

General Goals

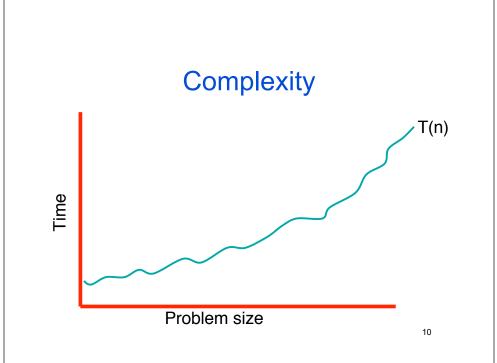
- Characterize growth rate of run time as a function of problem size, up to a constant factor
- Why not try to be more precise?
 - Technological variations (computer, compiler, OS, ...) easily 10x or more
 - Being more precise is a ton of work
 - A key question is "scale up": if I can afford to do it today, how much longer will it take when my business problems are twice as large? (E.g. today: cn², next year: c(2n)² = 4cn²: 4 x longer.)

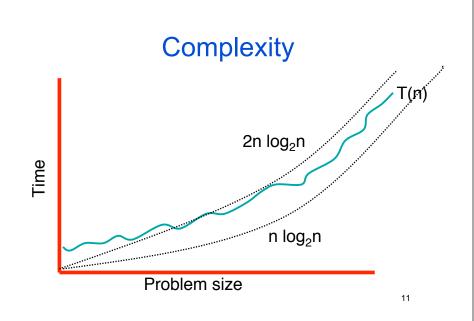
1

Complexity

- The complexity of an algorithm associates a number T(n), the best/worst/average-case time the algorithm takes, with each problem size n.
- · Mathematically,
 - $-T: N^+ \rightarrow R^+$
 - that is T is a function that maps positive integers giving problem size to positive real numbers giving number of steps.

9





O-notation etc

- Given two functions f and g:N→R
 - f(n) is O(g(n)) iff there is a constant c>0 so that f(n) is eventually always $\leq c g(n)$
 - f(n) is $\Omega(g(n))$ iff there is a constant c>0 so that f(n) is eventually always ≥ c g(n)
 - f(n) is $\Theta(g(n))$ iff there is are constants c_1 and c_2 >0 so that eventually always $c_1g(n) ≤ f(n) ≤ c_2g(n)$

Examples

- 10n²-16n+100 is O(n²) also O(n³)
 - $-10n^2-16n+100 \le 11n^2$ for all $n \ge 10$
- 10n²-16n+100 is $\Omega(n^2)$ also $\Omega(n)$
 - $-10n^2-16n+100 \ge 9n^2$ for all $n \ge 16$
 - Therefore also $10n^2$ -16n+100 is $\Theta(n^2)$
- 10n²-16n+100 is not O(n) also not $\Omega(n^3)$

13

Properties

- Transitivity.
 - If f = O(g) and g = O(h) then f = O(h).
 - If $f = \Omega(g)$ and $g = \Omega(h)$ then $f = \Omega(h)$.
 - If $f = \Theta(g)$ and $g = \Theta(h)$ then $f = \Theta(h)$.
- · Additivity.
 - If f = O(h) and g = O(h) then f + g = O(h).
 - If $f = \Omega(h)$ and $g = \Omega(h)$ then $f + g = \Omega(h)$.
 - If $f = \Theta(h)$ and g = O(h) then $f + g = \Theta(h)$.

14

Asymptotic Bounds for Some Common Functions

• Polynomials:

$$a_0 + a_1 n + ... + a_d n^d$$
 is $\Theta(n^d)$ if $a_d > 0$

• Logarithms:

$$O(\log_a n) = O(\log_b n)$$
 for any constants a,b > 0

Logarithms:

For all x > 0, $\log n = O(n^x)$

log grows slower than every polynomial

15

"One-Way Equalities"

- "2 + 2 is 4" vs 2 + 2 = 4 vs 4 = 2 + 2
- "Every dog is a mammal" vs "Every mammal is a dog"____
- $2n^2 + 5 \text{ n is } O(n^3)$ vs $2n^2 + 5 \text{ n} = O(n^3)$ vs

 $2n^2 + 5 n = O(n^3)$ $O(n^3) = 2n^2 + 5 n$

FALS

 OK to put big-O in R.H.S. of equality, but not left. Better notation: T(n) ∈ O(f(n)).

Working with $O-\Omega-\Theta$ notation

Claim: For any a, and any b>0, $(n+a)^b$ is $\Theta(n^b)$

$$- (n+a)^b \le (2n)^b \qquad \text{for } n \ge |a|$$

$$= 2^b n^b$$

$$= cn^b \qquad \text{for } c = 2^b$$
so $(n+a)^b$ is $O(n^b)$

$$- (n+a)^b \ge (n/2)^b \qquad \text{for } n \ge 2|a| \text{ (even if } a < 0)$$

$$= 2^{-b}n^b$$

$$= c'n \qquad \text{for } c' = 2^{-b}$$
so $(n+a)^b$ is $\Omega(n^b)$

17

19

Working with $O-\Omega-\Theta$ notation

Claim: For any a, b>1 $\log_a n$ is $\Theta(\log_b n)$

$$\log_a b = x \text{ means } a^x = b$$

$$a^{\log_a b} = b$$

$$(a^{\log_a b})^{\log_b n} = b^{\log_b n} = n$$

$$(\log_a b)(\log_b n) = \log_a n$$

$$c \log_b n = \log_a n \text{ for the constant } c = \log_a b$$
So:
$$\log_b n = \Theta(\log_a n) = \Theta(\log n)$$

18

Domination

- f(n) is o(g(n)) iff lim_{n→∞} f(n)/g(n)=0
 that is g(n) dominates f(n)
- If $\alpha \leq \beta$ then \mathbf{n}^{α} is $\mathbf{O}(\mathbf{n}^{\beta})$
- If $\alpha < \beta$ then \mathbf{n}^{α} is $\mathbf{o}(\mathbf{n}^{\beta})$
- Note:
 if f(n) is Θ(g(n)) then it cannot be o(g(n))

Working with little-o

• $n^2 = o(n^3)$ [Use algebra]:

$$\lim_{n\to\infty}\frac{n^2}{n^3}=\lim_{n\to\infty}\frac{1}{n}=0$$

• $n^3 = o(e^n)$ [Use L'Hospital's rule 3 times]:

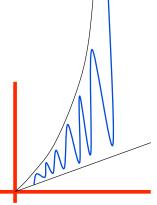
$$\lim_{n\to\infty} \frac{n^3}{e^n} = \lim_{n\to\infty} \frac{3n^2}{e^n} = \lim_{n\to\infty} \frac{6n}{e^n} = \lim_{n\to\infty} \frac{6}{e^n} = 0$$

Big-Theta, etc. not always "nice"

$$f(n) = \begin{cases} n^2, & n \text{ even} \\ n, & n \text{ odd} \end{cases}$$

 $f(n) \neq \Theta(n^a)$ for any a.

Fortunately, such nasty cases are rare



 $f(n \log n) \neq \Theta(n^a)$ for any a, either, but at least it's simpler.

A Possible Misunderstanding?

- · We have looked at
 - type of complexity analysis
 - worst-, best-, average-case
 - types of function bounds
 O, Ω, Θ

Insertion Sort: $\Omega(n^2)$ (worst case) O(n) (best case)

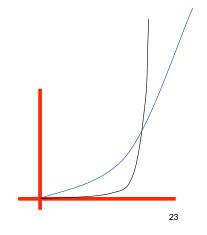
- These two considerations are independent of each other
 - one can do any type of function bound with any type of complexity analysis

22

Asymptotic Bounds for Some Common Functions

Exponentials.
 For all r > 1
 and all d > 0,
 n^d = O(rⁿ).

every exponential grows faster than every polynomial



Polynomial time

• Running time is O(nd) for some constant d independent of the input size n.

Why It Matters

Table 2.1 The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second. In cases where the running time exceeds 10^{25} years, we simply record the algorithm as taking a very long time.

	п	n log ₂ n	n^2	n^3	1.5 ⁿ	2 ⁿ	n!
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10^{25} years
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	10 ¹⁷ years	very long
n = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very long
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very long
n = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

Geek-speak Faux Pas du Jour

- "Any comparison-based sorting algorithm requires at least O(n log n) comparisons."
 - Statement doesn't "type-check."
 - Use Ω for lower bounds.

25