CSE 417: Algorithms and
Computational Complexity

1: Organization & Overview

Winter 2006
Larry Ruzzo

CSE Home

Administrative
FAQ
Draft Schedule

Email

Mall archive
Assignments
Solutions
Lecture Notes

University of Washi

Computer Science & Engineering

CSE 417, Wi '06: Algorithms & Computational Complexity

About Us ~ Search ~ Contact Info

Time: MWF 2:30-3:20
Place: Low 101 (schematic)

Office Hours Phone
Instructor: Larry Ruzzo, ruzzofcs, MF 12:00- 1:00, CSE 554, 543-6298
TA: Paul Pham, pphamécs, CSE 7772,

Catalog Description: Design and analysis of algorithms and data structures. Efficient algorithms
for manipulating graphs and strings. Fast Fourier Transform. Models of computation, including
Turing machines. Time and space plexity. NP- plete probl and undecidable probl
Prerequisite: CSE 373

Credits: 3

Class email lists: 7a wi06@u w: g . Use this list to ask and/or answer questions
about homework, lectures, ete. The instructor and TA are subscribed to this list, and will answer
questions, but I almost always find that the questions and answers are of general interest, and that your
fellow students often will answer more quickly (and more clearly) than the staff can. Students should
be automatically subscribed within 24 hours of registration. You can modify your subscription
options. All messages are automatically archived. General information about the email system is here.

Questions not of general interest should be directed to the instructor and/or TA.

http://www.cs.washington.edu/417 2

What you'll have to do

* Homework (~55% of grade)

— Programming
» Several small projects
— Written homework assignments
« English exposition and pseudo-code
» Analysis and argument as well as design

* Midterm / Final Exam (~15% / 30%)

+ Late Policy: Papers and/or electronic turnins are
due at the start of class on the due date. 10% off for
one day late (Monday, for Friday due dates); 20% per

day thereafter.
3

Textbook

» Algorithm Design by
Jon Kleinberg and
Eva Tardos.
Addison Wesley,
2006.

\ .
“\ JON KLEINBERG - EVA TARDOS

\
|

What the course is about

+ Design of Algorithms

— design methods

— common or important types of problems
— how to analyze algorithms

— correctness proofs

What the course is about

» Complexity and NP-completeness
— solving problems in principle is not enough
+ algorithms must be efficient
- NP

* class of useful problems whose solutions can be
easily checked but not necessarily found efficiently

— NP-completeness
» understanding when problems are hard to solve

Very Rough Division of Time

* Algorithms (7 weeks)
— Analysis of Algorithms
— Basic Algorithmic Design Techniques
— Graph Algorithms
» Complexity & NP-completeness (3 weeks)

| Mdoarsity of Wnshinglons

» Check online
schedule page for

CSE 417, Wi '06: Approximate Schedule

Due Lecture Topic Reading

Holiday

(evolving) details i

Intro, Examples & Complexity [Ch. 1; Ch 2
Intro, Examples & Complexity
Intro, Examples & Complexity

Graph Algorithms Ch3

Complexity Example

» Cryptography (e.g. RSA, SSL in browsers)
— Secret: p,q prime, say 512 bits each
— Public: n which equals pxq, 1024 bits
* In principle
— there is an algorithm that given n will find p and q
by trying all 25'2 possible p’s.
* In practice

— security of RSA depends on the fact that no
efficient algorithm is known for this

Algorithms
. . 107
Algorithms versus Machines or ——
. COC 6800
10° ¢
* We all know about Moore’s Law and the Hard' €0C 7800
. . . Cray 1
exponential improvements in hardware but... ware? s
Cray2
» EX: sparse linear equations over past few Solving § "1
decades Sparse » Cray 3 (Estmated)
] 1
linear
+ 10 orders of magnitude improvement in systems
speed
— 4 orders of magnitude improvement in hardware 104
— 6 orders of magnitude improvement in algorithms | o sar v sere
o ‘01“0 "'70 "'.0 H‘lo
[l T T T T T T T T T T T T
Algorithms Algo- e]
. s N :
O r r Ith m s g ‘-\rglglj)orhoods
1084 E \‘.:@‘I‘ tune
H a rd = Or 5 \\\. -\PSM /@7
? " Hard- ° A
ware’ ar : y
? =
Solving i . ware? - \ s .
- 7 AN &
S pa rse '.’1 g treecode or?iftpgjogy problems--.\\ Eﬂ
linear The E s \
B o tree tuned for planetesimals--h\
SyStemS 10 N'BOdy E 10 — JJ tree with planetesimal adaptive integrator-.\ —5
101 4 PrOblem 2 tree with MVS, perturbative forces-*i
*
Source: Sandia, via M. Schultz . o L o L
“:m 1970 1980 1990 2000 1970 1 9‘80 1990 2000
Year

Algorithm: definition

* Procedure to accomplish a task or solve
a well-specified problem

— Well-specified: know what all possible
inputs look like and what output looks like
given them

— “accomplish” via simple, well-defined steps

— Ex: sorting names (via comparison)

*

— Ex: checking for primality (via +, -, *, /, <)

13

Algorithms: a sample problem

» Printed circuit-board company has a robot arm that
solders components to the board

* Time to do it depends on

— total distance the arm must move from initial rest position
around the board and back to the initial positions

» For each board design, must figure out good order to
do the soldering

14

Printed Circuit Board

15

Printed Circuit Board

16

A well-defined Problem

* Input: Given a set S of n points in the plane

Output: The shortest cycle tour that visits each point
in the set S.

* Better known as “TSP”

How might you solve it?

17

Nearest
Neighbor
Heuristic

+ Start at some point p,

+ Walk first to its
nearest neighbor p;,

heuristic: A rule of thumb,
simplification, or

educated guess that
reduces or limits the
search for solutions

in domains that are difficult
and poorly understood.
Usually not guaranteed to
give the best or fastest
solution.

* Repeatedly walk to the nearest unvisited neighbor
until all points have been visited

+ Then walk back to p,

18

Nearest Neighbor Heuristic

P4
Po _.-®--~: L2
14 s,
I. p
. 9
! .
. /
) .
p6 o ,/
~ .-t

19

An input where it works badly

16

20

Revised idea - Closest pairs first

» Repeatedly pick the closest pair of
points to join so that the result can still
be part of a single loop in the end

— can pick endpoints of line segments
already created

 How does this work on our bad
example?

21

Another bad example

22

Another bad example

m 1 6+V10 =9.16

1.5 1.5 Vs

23

Something that works

* For each of the n! = n(n-1)(n-2)...1 orderings
of the points, check the length of the cycle
you get

» Keep the best one

24

Two Notes

* The two incorrect algorithms were greedy
— Often very natural & tempting ideas

— they make choices that look great “locally” (and never
reconsidered them)

— often does not work - you get boxed in
« when it works, the algorithms are typically efficient
» Our correct algorithm avoids this, but is incredibly
slow

— 20! is so large that counting to one billion in a second it
would still take 2.4 billion seconds
* (around 70 years!)

25

Something that “works”
(differently)

1. Find Min Spanning Tree

26

Something that “works”
(differently)

2. Walk around it

27

Something that “works”
(differently)

3. Take shortcuts (instead of revisiting)

28

Something that “works” (differently):
Guaranteed Approximation The Morals of the Story

Simple problems can be hard

— Factoring, TSP

Simple ideas don’t always work

— Nearest neighbor, closest pair heuristics
Simple algorithms can be very slow
— Brute-force factoring, TSP

Changing your objective can be good
— Guaranteed approximation for TSP

* Does it seem wacky?

* Maybe, but it's always within a factor of
2 of the best tour!
— deleting one edge from best tour gives a
spanning tree, so Min spanning tree < best
tour

— best tour < wacky tour < 2 * MST < 2 * best

29 30

