CSE 417 Introduction to Algorithms Winter 2005

NP-Completeness

(Chapter 6)

Some Algebra Problems (Algorithmic)

Given positive integers a, b, c

Question 1: does there exist a positive integer x such that ax = c?

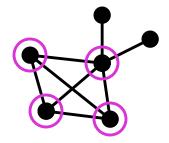
Question 2: does there exist a positive integer x such that $ax^2 + bx = c$?

Question 3: do there exist positive integers x and y such that $ax^2 + by = c$?

The Clique Problem

Given: a graph G=(V,E) and an integer k

Question: is there a subset U of V with IUI ≥ k such that every pair of vertices in U is joined by an edge.



Solving The Clique Problem

- A simple way:
 - Systematically list all possible sets of exactly k nodes
 - For each such set, check whether all pairs are neighbors
- A general approach for problems like this: Backtracking

Backtracking (abstractly)

```
    Want: a vector (a<sub>1</sub>, a<sub>2</sub>, ..., a<sub>q</sub>) satisfying some

   property P, e.g. "a<sub>1</sub>...a<sub>a</sub> is a q-clique".
   BT(A,j)
         if A, i satisfies P, report it
         else
                   j = j+1
                   let S_i be the set of "candidates" for slot j;
                   for each a<sub>i</sub> in S<sub>i</sub>
                             BT(A . a_i, j)
Top Level: Call BT(empty,0); report "no solution" if it
   found none.
```

Backtracking for k-Clique, I

a,'s are distinct vertices, in order.

S_j is empty if j≥k, else the set of all vertex numbers greater than last in A

BT(A,j)

if A, j satisfies P, report it

else

Test for j == k and presence of all edges

$$j = j+1$$

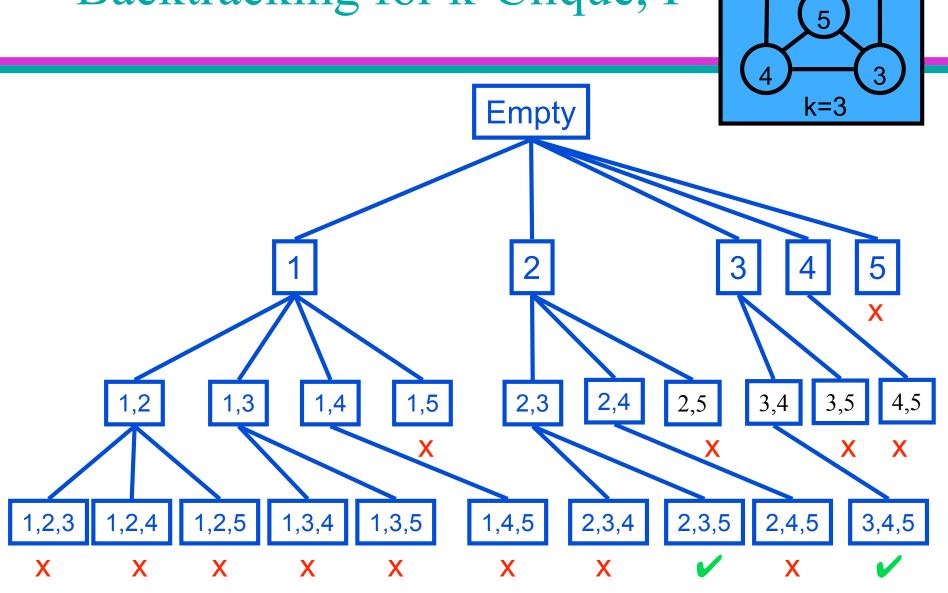
let S_j be the set of "candidates" for slot j for each a_i in S_i

 $BT(A . a_i, j)$

Top Level: Call BT(empty,0); report "no solution" if it found none.

Time: $n*(n-1)*...*(n-k+1)*k^2$

Backtracking for k-Clique, I



Backtracking for k-Clique, II

a_i's are distinct vertices, in order, that are adjacent to each other

Want: a vector (a₁, a₂, ..., a_q) satisfying some property P, e.g. "a₁...a_q is a q-clique".

```
BT(A,j)
```

if A, j satisfies P, report it else

S_j is empty if j≥k, else set of all vertex numbers greater than last in A and adjacent to all in A

Just test for j == k

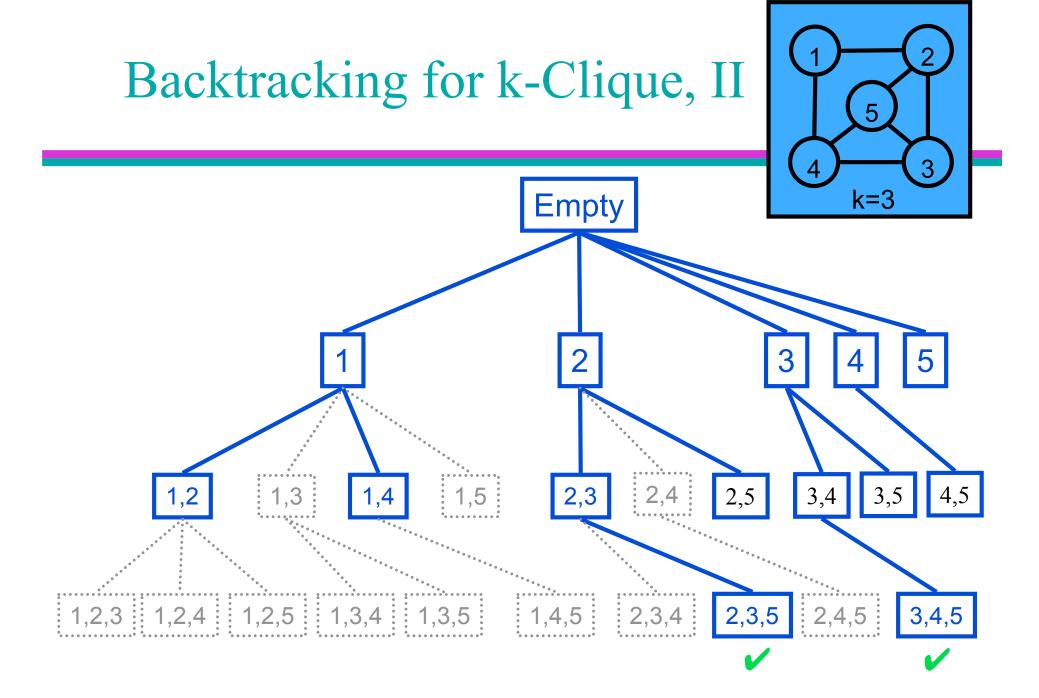
```
j = j+1
```

let S_j be the set of "candidates" for slot j; for each a_j in S_j

 $BT(A . a_j, j)$

Top Level: Call BT(empty,0); report "no solution" if it found none.

Time: depends strongly on graph, but basically as bad in worst case.



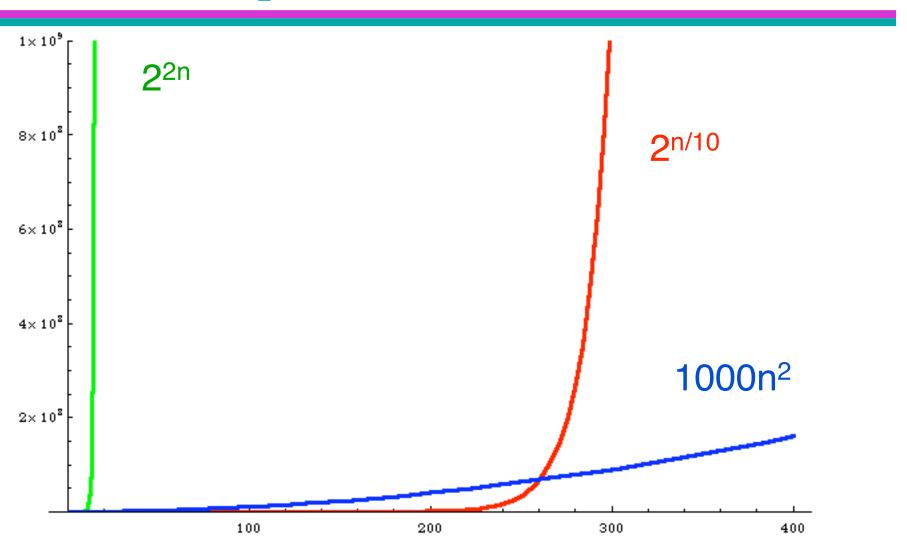
A Brief History of Ideas

- From Classical Greece, if not earlier, "logical thought" held to be a somewhat mystical ability
- Mid 1800's: Boolean Algebra and foundations of mathematical logic created possible "mechanical" underpinnings
- 1900: David Hilbert's famous speech outlines program: mechanize all of mathematics?
- 1930's: Gödel, Church, Turing, et al. prove it's impossible

More History

- 1930/40's
 - What is (is not) computable
- 1960/70's
 - What is (is not) feasibly computable
 - Goal a (largely) technology independent theory of time required by algorithms
 - Key modeling assumptions/approximations
 - · Asymptotic (Big-O), worst case is revealing
 - Polynomial, exponential time qualitatively different

Polynomial vs Exponential Growth



Another view of Poly vs Exp

Next year's computer will be 2x faster. If I can solve problem of size n₀ today, how large a problem can I solve in the same time next year?

Complexity	Increase	E.g. T=10 ¹²	
O(n)	$n_0 \rightarrow 2n_0$	10 ¹²	2 x 10 ¹²
O(n ²)	$n_0 \rightarrow \sqrt{2} n_0$	10 ⁶	1.4 x 10 ⁶
O(n ³)	$n_0 \rightarrow 3\sqrt{2} n_0$	10 ⁴	1.25 x 10 ⁴
2 ⁿ /10	$n_0 \rightarrow n_0 + 10$	400	410
2 ⁿ	$n_0 \rightarrow n_0 + 1$	40	41

Polynomial versus exponential

- We'll say any algorithm whose run-time is
 - polynomial is good
 - bigger than polynomial is bad
- Note of course there are exceptions:
 - n¹⁰⁰ is bigger than (1.001)ⁿ for most practical values of n but usually such run-times don't show up
 - There are algorithms that have run-times like O(2^{n/22}) and these may be useful for small input sizes, but they're not too common either

Some Convenient Technicalities

- "Problem" the general case
 - Ex: The Clique Problem: Given a graph G and an integer k, does G contain a k-clique?
- "Problem Instance" the specific cases
 - Ex: Does contain a 4-clique? (no)
 - Ex: Does contain a 3-clique? (yes)
- Decision Problems Just Yes/No answer
- Problems as Sets of "Yes" Instances
 - Ex: CLIQUE = { (G,k) | G contains a k-clique }
 - E.g., (, 4) ∉ CLIQUE
 - E.g., (, 3) ∈ CLIQUE

Decision problems

- Computational complexity usually analyzed using decision problems
 - answer is just 1 or 0 (yes or no).
- Why?
 - much simpler to deal with
 - deciding whether G has a k-clique, is certainly no harder than finding a k-clique in G, so a lower bound on deciding is also a lower bound on finding
 - Less important, but if you have a good decider, you can often use it to get a good finder. (Ex.: does G still have a kclique after I remove this vertex?)

The class P

Definition: P = set of (decision) problems solvable by computers in polynomial time.

i.e. $T(n) = O(n^k)$ for some fixed k.

These problems are sometimes called tractable problems.

Examples: sorting, shortest path, MST, connectivity, biconnectivity, various dynamic programming – *all of 417 up to now except Knapsack/Change-Making*

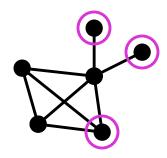
Beyond P?

- There are many natural, practical problems for which we don't know any polynomial-time algorithms
- e.g. CLIQUE:
 - Given a weighted graph G and an integer k, does there exist a k-clique in G?
- e.g. quadratic Diophantine equations:
 - Given a, b, $c \in N$, $\exists x, y \in N$ s.t. $ax^2 + by = c$?

Some Problems

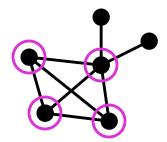
Independent-Set:

Given a graph G=(V,E) and an integer k, is there a subset U of V with IUI ≥ k such that no two vertices in U are joined by an edge.



Clique:

Given a graph G=(V,E) and an integer k, is there a subset U of V with IUI ≥ k such that every pair of vertices in U is joined by an edge.



Some More Problems

• Euler Tour:

 Given a graph G=(V,E) is there a cycle traversing each edge once.

Hamilton Tour:

• Given a graph G=(V,E) is there a simple cycle of length IVI, i.e., traversing each *vertex* once.

• TSP:

 Given a weighted graph G=(V,E,w) and an integer k, is there a Hamilton tour of G with total weight ≤ k.

Satisfiability

- Boolean variables x₁,...,x_n
 - taking values in {0,1}. 0=false, 1=true
- Literals
 - x_i or $\neg x_i$ for i=1,...,n
- Clause
 - a logical OR of one or more literals
 - e.g. $(x_1 \vee \neg x_3 \vee x_7 \vee x_{12})$
- CNF formula
 - a logical AND of a bunch of clauses

Satisfiability

- CNF formula example
 - $(x1 \lor \neg x3 \lor x7 \lor x12) \land (x2 \lor \neg x4 \lor x7 \lor x5)$
- If there is some assignment of 0's and 1's to the variables that makes it true then we say the formula is satisfiable
 - the one above is, the following isn't
 - $x1 \land (\neg x1 \lor x2) \land (\neg x2 \lor x3) \land \neg x3$
- Satisfiability: Given a CNF formula F, is it satisfiable?

More History – As of 1970

- Many of the above problems had been studied for decades
- All had real, practical applications
- None had poly time algorithms; exponential was best known
- But, it turns out they all have a very deep similarity under the skin

Some Problem Pairs

- Euler Tour
- 2-SAT
- Min Cut
- Shortest Path

- Hamilton Tour
- 3-SAT
- Max Cut
- Longest Path

Similar pairs; seemingly different computationally

Common property of these problems

 There is a special piece of information, a short hint or proof, that allows you to efficiently (in polynomialtime) verify that the YES answer is correct. This hint might be very hard to find

• e.g.

- TSP: the tour itself,
- Independent-Set, Clique: the set U
- Satisfiability: an assignment that makes F true.
- Quadratic Diophantine eqns: the numbers x & y.

The complexity class NP

NP consists of all decision problems where

 You can verify the YES answers efficiently (in polynomial time) given a short (polynomial-size) hint

And

- No hint can fool your polynomial time verifier into saying YES for a NO instance
- (implausible for all exponential time problems)

More Precise Definition of NP

- A decision problem is in NP iff there is a polynomial time procedure v(.,.), and an integer k such that
 - for every YES problem instance x there is a hint h
 with lhl ≤ lxl^k such that v(x,h) = YES
 and
 - for every NO problem instance x there is no hint h with $lnl \le lxl^k$ such that v(x,h) = YES
- "Hints" sometimes called "Certificates"

Example: CLIQUE is in NP

```
procedure v(x,h)
   if
     x is a well-formed representation of a graph G =
     (V, E) and an integer k,
   and
     h is a well-formed representation of a k-vertex
     subset U of V,
   and
     U is a clique in G,
   then output "YES"
   else output "I'm unconvinced"
```

Is it correct?

 For every x = (G,k) such that G contains a kclique, there is a hint h that will cause v(x,h) to say YES, namely h = a list of the vertices in such a k-clique

and

No hint can fool v into saying yes if either x isn't well-formed (the uninteresting case) or if x = (G,k) but G does not have any cliques of size k (the interesting case)

Another example: $SAT \in NP$

- Hint: the satisfying assignment A
- Verifier: v(F,A) = syntax(F,A) && satisfies(F,A)
 - Syntax: True iff F is a well-formed formula & A is a truth-assignment to its variables
 - Satisfies: plug A into F and evaluate
- Correctness:
 - If F is satisfiable, it has some satisfying assignment
 A, and we'll recognize it
 - If F is unsatisfiable, it doesn't, and we won't be fooled

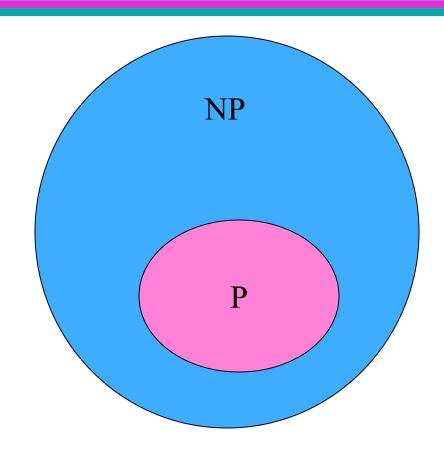
Keys to showing that a problem is in NP

- What's the output? (must be YES/NO)
- What's the input? Which are YES?
- For every given YES input, is there a hint that would help? Is it polynomial length?
 - OK if some inputs need no hint
- For any given NO input, is there a hint that would trick you?

Complexity Classes

NP = Polynomial-time **verifiable**

P = Polynomial-time
solvable



Solving NP problems without hints

- The only obvious algorithm for most of these problems is brute force:
 - try all possible hints and check each one to see if it works.
 - Exponential time:
 - 2ⁿ truth assignments for n variables
 - n! possible TSP tours of n vertices
 - $\binom{n}{k}$ possible k element subsets of n vertices
 - · etc.
- ...and to date, even much less-obvious algs are slow, too

Problems in P can also be verified in polynomial-time

Shortest Path: Given a graph G with edge lengths, is there a path from S to S of length S

Verify: Given a purported path from s to t, is it a path, is its length $\leq k$?

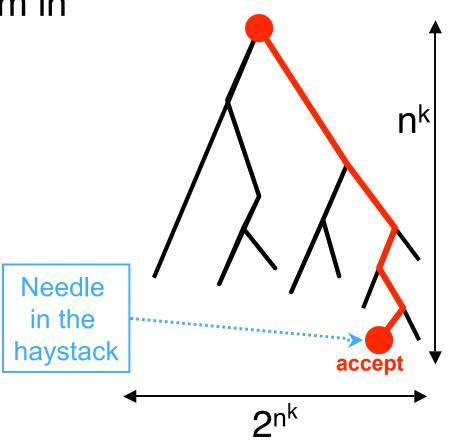
Small Spanning Tree: Given a weighted undirected graph G, is there a spanning tree of weight $\leq k$?

Verify: Given a purported spanning tree, is it a spanning tree, is its weight $\leq k$?

P vs NP vs Exponential Time

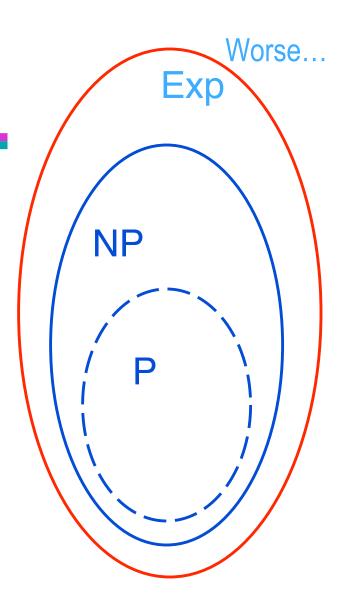
 Theorem: Every problem in NP can be solved deterministically in exponential time

 Proof: "hints" are only n^k long; try all 2^{n^k} possibilities, say by backtracking. If any succeed, say YES; if all fail, say NO.



P and NP

- Every problem in P is in NP
 - one doesn't even need a hint for problems in P so just ignore any hint you are given
- Every problem in NP is in exponential time
- I.e., $P \subseteq NP \subseteq Exp$
- We know P ≠ Exp, so either P ≠NP, or NP ≠ Exp (most likely both)



P vs NP

- Theory
 - -P=NP?
 - Open Problem!
 - I bet against it

- Practice
 - Many interesting, useful, natural, well-studied problems known to be NPcomplete
 - With rare exceptions, no one routinely succeeds in finding exact solutions to large, arbitrary instances

A problem NOT in NP; A bogus "proof" to the contrary

EEXP = {(p,x) | program p accepts input x in < 2^{2|x|} steps }

NON Theorem: EEXP in NP

 "Proof" 1: Hint = step-by-step trace of the computation of p on x; verify step-by-step

More Connections

- Some Examples in NP
 - Satisfiability
 - Independent-Set
 - Clique
 - Vertex Cover
- All hard to solve; hints seem to help on all
- Very surprising fact:
 - Fast solution to any gives fast solution to all!

The class NP-complete

We are pretty sure that no problem in NP – P can be solved in polynomial time.

Non-Definition: NP-complete = the **hardest** problems in the class NP. (Formal definition later.)

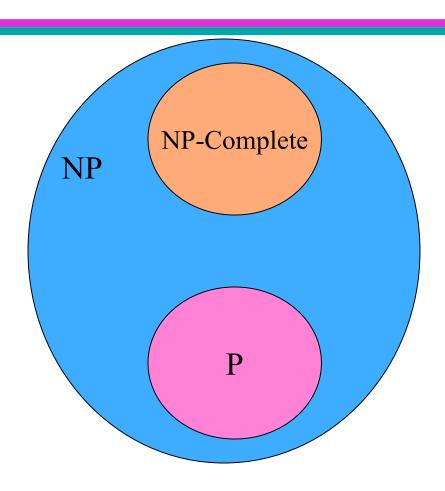
Interesting fact: If any one NP-complete problem could be solved in polynomial time, then *all* NP problems could be solved in polynomial time.

Complexity Classes

NP = Poly-time **verifiable**

P = Poly-time solvable

NP-Complete = "Hardest" problems in NP



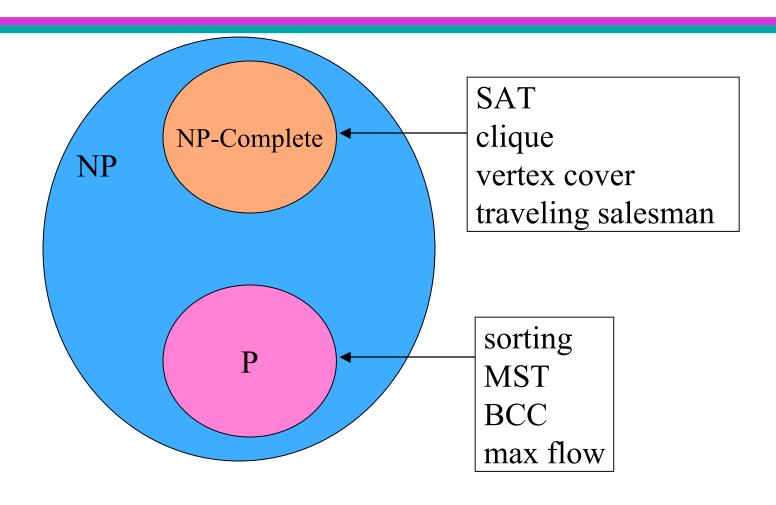
The class NP-complete (cont.)

Thousands of important problems have been shown to be NP-complete.

Fact (Dogma): The general belief is that there is no efficient algorithm for any **NP-complete** problem, but no proof of that belief is known.

Examples: SAT, clique, vertex cover, Hamiltonian cycle, TSP, bin packing.

Complexity Classes of Problems



Does P = NP?

- This is an open question.
- To show that P = NP, we have to show that every problem that belongs to NP can be solved by a polynomial time deterministic algorithm.
- No one has shown this yet.
- (It seems unlikely to be true.)

Is all of this useful for anything?

Earlier in this class we learned techniques for solving problems in **P**.

Question: Do we just throw up our hands if we come across a problem we suspect **not to be in P**?

Dealing with NP-complete Problems

What if I think my problem is not in P?

Here is what you might do:

- Prove your problem is NP-hard or -complete (a common, but not guaranteed outcome)
- 2) Come up with an algorithm to solve the problem **usually** or **approximately**.

Reductions: a useful tool

Definition: To **reduce** A to B means to solve A, given a subroutine solving B.

Example: reduce MEDIAN to SORT

Solution: sort, then select (n/2)nd

Example: reduce SORT to FIND_MAX

Solution: FIND_MAX, remove it, repeat

Example: reduce MEDIAN to FIND_MAX

Solution: transitivity: compose solutions above.

Reductions: Why useful

Definition: To **reduce** A to B means to solve A, given a subroutine solving B.

Fast algorithm for B implies fast algorithm for A (nearly as fast; takes some time to set up call, etc.)

If every algorithm for A is slow, then no algorithm for B can be fast.

"complexity of A" ≤ "complexity of B" + "complexity of reduction"

The growth of the number of NP-complete problems

- Steve Cook (1971) showed that SAT was NP-complete.
- Richard Karp (1972) found 24 more NP-complete problems.
- Today there are thousands of known NP-complete problems.
 - Garey and Johnson (1979) is an excellent source of NP-complete problems.

SAT is NP-complete

Cook's theorem: SAT is NP-complete

Satisfiability (SAT)

A Boolean formula in conjunctive normal form (CNF) is **satisfiable** if there exists a truth assignment of 0's and 1's to its variables such that the value of the expression is 1. Example:

$$S=(x+y+\neg z) \cdot (\neg x+y+z) \cdot (\neg x+\neg y+\neg z)$$

Example above is satisfiable. (We can see this by setting x=1, y=1 and z=0.)

How do you prove problem *A* is NP-complete?

- 1) **Prove A is in NP:** show that given a solution, it can be verified in polynomial time.
- 2) Prove that A is NP-hard:
 - a) Select a known NP-complete problem B.
 - b) Describe a polynomial time computable algorithm that computes a function f, mapping every instance of B to an instance of A. (that is: $B \leq_p A$)
 - c) Prove that if b is a *yes*-instance of B then f(b) is a *yes*-instance of A. Conversely, if f(b) is a *yes*-instance of A, then b must be *yes*-instance of B.
 - d) Prove that the algorithm computing *f* runs in polynomial time.

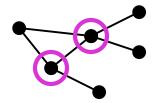
NP-complete problem: Vertex Cover

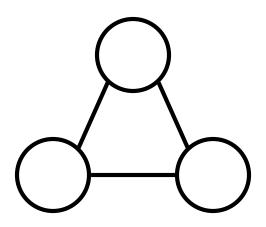
Input: Undirected graph G = (V, E), integer k.

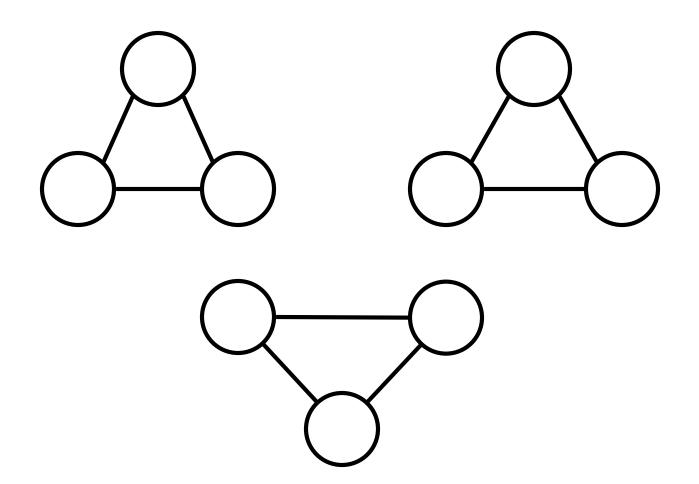
Output: True iff there is a subset C of V of size $\leq k$ such that every edge in E is incident to at least one vertex in C.

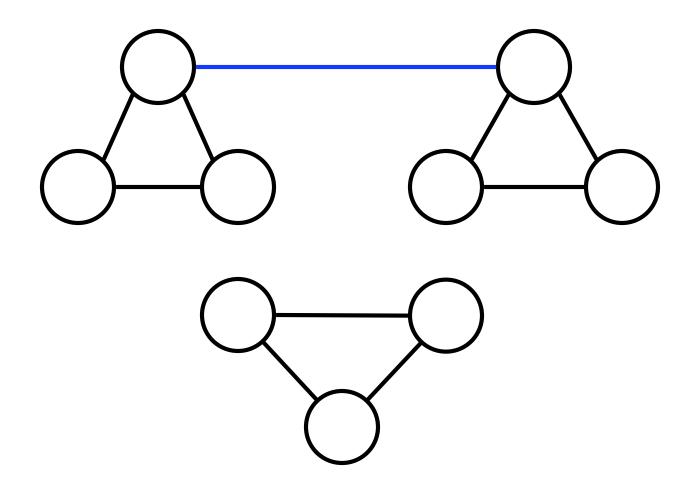
Example: Vertex cover of size ≤ 2 .

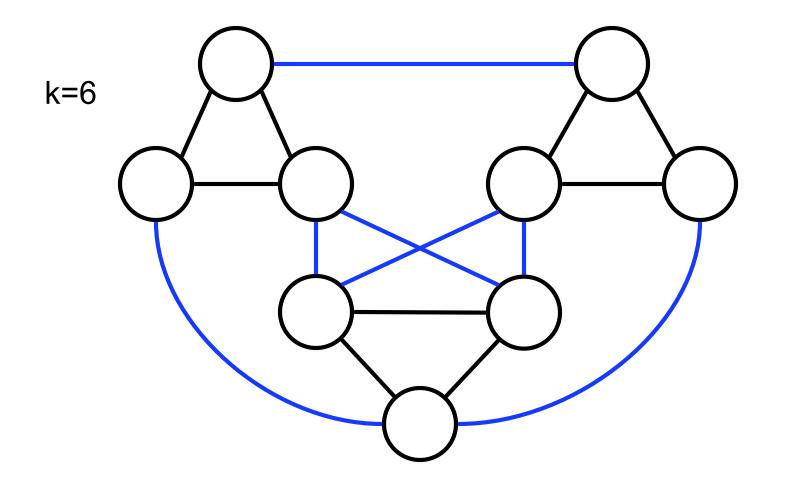
In NP? Exercise





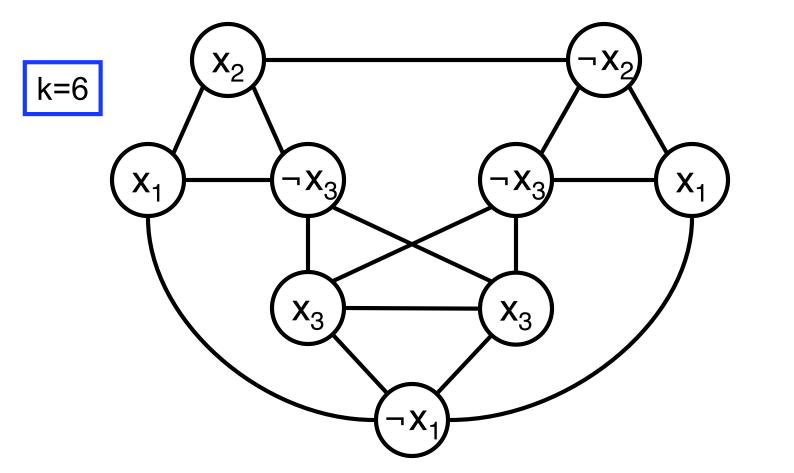






3SAT ≤_p VertexCover

 $(x_1 \lor x_2 \lor \neg x_3) \land (x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_3)$



3SAT ≤_p VertexCover

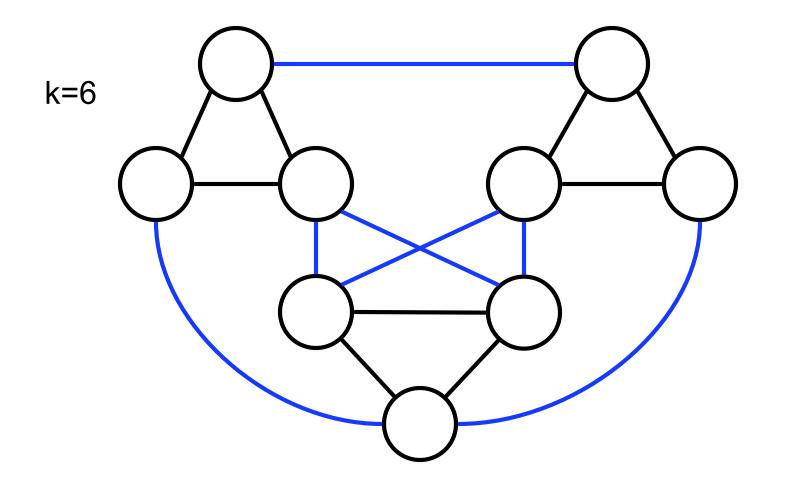
f

3-SAT Instance:

- Variables: x_1, x_2, \dots
- Literals: $y_{i,j}$, $1 \le i \le q$, $1 \le j \le 3$
- Clauses: $c_i = y_{i1} \vee y_{i2} \vee y_{i3}$, $1 \le I \le q$
- Formula: $c = c_1 \wedge c_2 \wedge ... \wedge c_q$

VertexCover Instance:

- -k=2q
- -G = (V, E)
- $V = \{ [i,j] | 1 \le i \le q, 1 \le j \le 3 \}$
- $E = \{ ([i,j], [k,l]) | i = k \text{ or } y_{ij} = \neg y_{kl} \}$



Correctness of "3-SAT ≤_p VertexCover"

Summary of reduction function f:

Given formula, make graph G with one group per clause, one node per literal. Connect each to all nodes in *same* group, *plus* complementary literals $(x, \neg x)$. Output graph G plus integer k = 2 * number of clauses. Note: f does *not* know whether formula is satisfiable or not; does *not* know if G has k-cover; does *not* try to find satisfying assignment or cover.

Correctness:

- 1. Show f poly time computable: A key point is that graph size is polynomial in formula size; mapping basically straightforward.
- Show c in 3-SAT iff f(c)=(G,k) in VertexCover:
 (⇒) Given an assignment satisfying c, pick one true literal per clause. Add other 2 nodes of each triangle to cover. Show it is a cover: 2 per triangle cover triangle edges; only true literals (but perhaps not all true literals) uncovered, so at least one end of every (x, ¬x) edge is covered. (⇐) Given a k-vertex cover in G, uncovered labels define a valid (perhaps partial) truth assignment since no (x, ¬x) pair uncovered. It satisfies c since there is one uncovered node in each clause triangle (else some other clause triangle has > 1 uncovered node, hence an uncovered edge.)

Utility of "3-SAT ≤_p VertexCover"

- Suppose we had a fast algorithm for VertexCover, then we could get a fast algorithm for 3SAT:
 - Given 3-CNF formula w, build VertexCover instance y = f(w) as above, run the fast VC alg on y; say "YES, w is satisfiable" iff VC alg says "YES, y has a vertex cover of the given size"
- On the other hand, suppose no fast alg is possible for 3SAT, then we know none is possible for VertexCover either.

"3-SAT ≤_p VertexCover" Retrospective

- Previous slide: two suppositions
- Somewhat clumsy to have to state things that way.
- Alternative: abstract out the key elements, give it a name ("polynomial time reduction"), then properties like the above always hold.

Polynomial-Time Reductions

Definition: Let **A** and **B** be two problems.

We say that **A** is **polynomially reducible** to **B** if there exists a polynomial-time algorithm **f** that converts each instance **x** of problem **A** to an instance **f**(**x**) of **B** such that **x** is a YES instance of **A** iff **f**(**x**) is a YES instance of **B**.

$$x \in A \Leftrightarrow f(x) \in B$$

Polynomial-Time Reductions (cont.)

Define: $A \leq_{p} B$ "A is polynomial-time reducible to B", iff there is a polynomial-time computable Why the notation? function f such that: $x \in A \Leftrightarrow f(x) \in B$

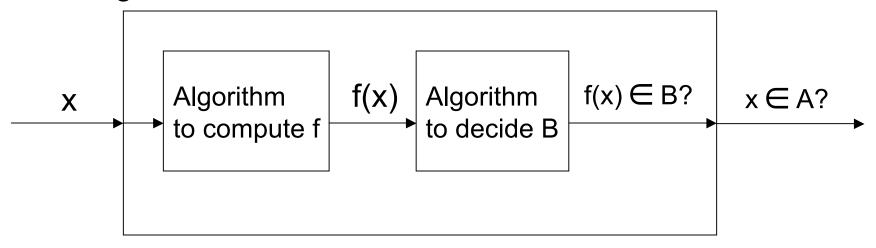
"complexity of A" ≤ "complexity of B" + "complexity of f"

- (1) $A \leq_{p} B$ and $B \in P \Rightarrow A \in P$
- (2) $A \leq_p B$ and $A \notin P \Rightarrow B \notin P$
- (3) $A \leq_p B$ and $B \leq_p C \Rightarrow A \leq_p C$ (transitivity)

polynomial

Using an Algorithm for **B** to Decide **A**

Algorithm to decide A



"If $A \leq_p B$, and we can solve B in polynomial time, then we can solve A in polynomial time also."

Ex: suppose f takes $O(n^3)$ and algorithm for B takes $O(n^2)$. How long does the above algorithm for A take?

Definition of NP-Completeness

Definition: Problem *B* is **NP-hard** if *every* problem in NP is polynomially reducible to *B*.

Definition: Problem *B* is **NP-complete** if:

- (1) B belongs to NP, and
- (2) *B* is NP-hard.

Proving a problem is NP-complete

- Technically, for condition (2) we have to show that every problem in NP is reducible to B. (yikes!) This sounds like a lot of work.
- For the very first NP-complete problem (SAT) this had to be proved directly.
- However, once we have one NP-complete problem, then we don't have to do this every time.
- Why? Transitivity.

Re-stated Definition

Lemma: Problem *B* is **NP-complete** if:

- (1) B belongs to NP, and
- (2') A is polynomial-time reducible to B, for some problem A that is NP-complete.

That is, to show (2') given a new problem *B*, it is sufficient to show that SAT or any other NP-complete problem is polynomial-time reducible to *B*.

Usefulness of Transitivity

- Now we only have to show $L' \leq_p L$, for <u>some</u> problem $L' \in NP$ -complete, in order to show that L is NP-hard. Why is this equivalent?
- Since L'∈ NP-complete, we know that L' is NP-hard. That is:

 $\forall L'' \in NP$, we have $L'' \leq_p L'$

2) If we show $L' \leq_p L$, then by transitivity we know that: $\forall L'' \in NP$, we have $L'' \leq_p L$.

Thus L is NP-hard.

Ex: VertexCover is NP-complete

- 3-SAT is NP-complete (shown by S. Cook)
- 3-SAT ≤p VertexCover
- VertexCover is in NP (we showed this earlier)
- Therefore VertexCover is also NP-complete
- So, poly-time algorithm for VertexCover would give poly-time algs for everything in NP

Coping with NP-Completeness

- Is your real problem a special subcase?
 - E.g. 3-SAT is NP-complete, but 2-SAT is not;
 - Ditto 3- vs 2-coloring
 - E.g. maybe you only need planar graphs, or degree 3 graphs, or ...
- Guaranteed approximation good enough?
 - E.g. Euclidean TSP within 1.5 * Opt in poly time
- Clever exhaustive search may be fast enough in practice, e.g. Backtrack, Branch & Bound, pruning
- Heuristics usually a good approximation and/or usually fast

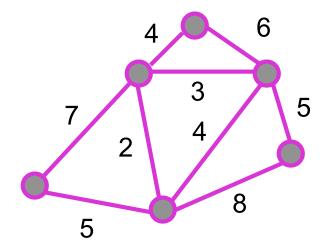
NP-complete problem: TSP

Input: An undirected graph G=(V,E) with integer edge weights, and an integer b.

Output: YES iff there is a simple cycle in G passing through all vertices (once), with total cost ≤ b.

Example:

$$b = 34$$



2x Approximation to EuclideanTSP

- A TSP tour visits all vertices, so contains a spanning tree, so TSP cost is > cost of min spanning tree.
- Find MST
- Find "DFS" Tour
- Shortcut
- TSP ≤ shortcut < DFST = 2 * MST < 2 * TSP

Summary

- Big-O good
- P good
- Exp bad
- Exp, but hints help? NP
- NP-hard, NP-complete bad (I bet)
- To show NP-complete reductions
- NP-complete = hopeless? no, but you need to lower your expectations: heuristics & approximations.

