
1

CSE 417: Algorithms and
Computational Complexity

Winter 2005
Graphs and Graph Algorithms

Larry Ruzzo

2

Kevin Kline was in
“French Kiss”
with Meg Ryan

Meg Ryan was in
“Sleepless in Seattle”

with Tom Hanks

Tom Hanks was in
“Apollo 13”

with Kevin Bacon

3

Objects & Relationships

 The Kevin Bacon Game:
 Actors
 Two are related if they’ve been in a movie together

 Exam Scheduling:
 Classes
 Two are related if they have students in common

 Traveling Salesperson Problem:
 Cities
 Two are related if can travel directly between them

4

Graphs

 An extremely important formalism for
representing (binary) relationships

 Objects: “vertices”, aka “nodes”
 Relationships between pairs: “edges”,

aka “arcs”
 Formally, a graph G = (V, E) is a pair of

sets, V the vertices and E the edges

5

Undirected Graph G = (V,E)
1

2
10

9

8

3

4

5
6

7

11
12

13

6

Undirected Graph G = (V,E)
1

2
10

9

8

3

4

5
6

7

11
12

13

7

Undirected Graph G = (V,E)
1

2
10

9

8

3

4

5
6

7

11
12

13

8

Undirected Graph G = (V,E)
1

2
10

9

8

3

4

5
6

7

11
12

13

“loop”

“multi-
 edge”

9

Undirected Graph G = (V,E)
1

2
10

9

8

3

4

5
6

7

11
12

13

“loop”

“multi-
 edge”

10

Graphs don’t live in Flatland

 Geometrical drawing is mentally
convenient, but mathematically
irrelevant: 4 drawings, 1 graph.

A

7 4

3
A

74

3

A

74

3

A

7 4

3

11

Directed Graph G = (V,E)
1

2
10

9

8

3

4

5
6

7

11
12

13

12

Directed Graph G = (V,E)
1

2
10

9

8

3

4

5
6

7

11
12

13

13

Directed Graph G = (V,E)
1

2
10

9

8

3

4

5
6

7

11
12

13

14

Directed Graph G = (V,E)
1

2
10

9

8

3

4

5
6

7

11
12

13

“loop”

“multi-
 edge”

15

Directed Graph G = (V,E)
1

2
10

9

8

3

4

5
6

7

11
12

13

“loop”

“multi-
 edge”

16

A

7 4

3

Specifying undirected
graphs as input

 What are the vertices?
 Explicitly list them:

{“A”, “7”, “3”, “4”}
 What are the edges?
 Either, set of edges

{{A,3}, {7,4}, {4,3}, {4,A}}
 Or, (symmetric)

adjacency matrix:

!

A 7 3 4

A 0 0 1 1

7 0 0 0 1

3 1 0 0 1

4 1 1 1 0

17

A

7 4

3

Specifying directed
graphs as input

 What are the vertices
 Explicitly list them:

{“A”, “7”, “3”, “4”}
 What are the edges
 Either, set of directed

edges: {(A,4), (4,7),
(4,3), (4,A), (A,3)}

 Or, (nonsymmetric)
adjacency matrix:

!

A 7 3 4

A 0 0 1 1

7 0 0 0 0

3 0 0 0 0

4 1 1 1 0

18

Vertices vs # Edges

 Let G be an undirected graph with n vertices
and m edges

 How are n and m related?
 Since
 every edge connects two different vertices (no

loops), and
 no two edges connect the same two vertices (no

multi-edges),
it must be true that: 0 ≤ m ≤ n(n-1)/2 = O(n2)

19

More Cool Graph Lingo

 A graph is called sparse if m << n2, otherwise it
is dense
 Boundary is somewhat fuzzy; O(n) edges is certainly

sparse, Ω(n2) edges is dense.
 Sparse graphs are common in practice
 E.g., all planar graphs are sparse

 Q: which is a better run time, O(n+m) or O(n2)?
A: O(n+m) = O(n2), but n+m usually way better!

20

Representing Graph G = (V,E)
n vertices, m edges

 Vertex set V = {v1, …, vn}
 Adjacency Matrix A
 A[i,j] = 1 iff (vi,vj) ∈ E
 Space is n2 bits

 Advantages:
 O(1) test for presence or absence of edges.
 compact if in packed binary form for large m

 Disadvantages: inefficient for sparse graphs

m << n2

!

A 7 3 4

A 0 0 1 1

7 0 0 0 1

3 1 0 0 1

4 1 1 1 0

A

743

21

Representing Graph G=(V,E)
n vertices, m edges

 Adjacency List:
 O(n+m) words

 Advantages:
 Compact for

sparse graphs
 Easily see all edges

 Disadvantages
 More complex data structure
 no O(1) edge test

7

7

v3

v2

v1

vn

2 6

2 4

3

5

1

22

Representing Graph G=(V,E)
n vertices, m edges

 Adjacency List:
 O(n+m) words

 Back- and cross pointers more work to build,
but allow easier traversal and deletion of edges,
if needed, (don’t bother if not)

1

7

v3

v2

v1

v7

2 6

2 4

3

5

1

23

Graph Traversal

 Learn the basic structure of a graph
 “Walk,” via edges, from a fixed starting

vertex v to all vertices reachable from v

 Three states of vertices
 undiscovered
 discovered
 fully-explored

24

Breadth-First Search

 Completely explore the vertices in order
of their distance from v

 Naturally implemented using a queue

25

BFS(v)

Global initialization: mark all vertices "undiscovered"
BFS(v)

mark v "discovered"
queue = v
while queue not empty

u = remove_first(queue)
for each edge {u,x}

if (x is undiscovered)
mark x discovered
append x on queue

mark u completed

Exercise: modify
code to number
vertices &
compute level
numbers

27

BFS(v)
1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:
1

28

BFS(v)
1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:
2 3

29

BFS(v)
1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:
3 4

30

BFS(v)
1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:
4 5 6 7

31

BFS(v)
1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:
5 6 7 8 9

32

BFS(v)
1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:
8 9 10 11

33

BFS(v)
1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:
10 11 12 13

34

BFS(v)
1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:

35

BFS analysis

 Each edge is explored once from each
end-point (at most)

 Each vertex is discovered by following a
different edge

 Total cost O(m) where m=# of edges

36

Properties of (Undirected) BFS(v)

 BFS(v) visits x if and only if there is a path in G
from v to x.

 Edges into then-undiscovered vertices define a
tree – the "breadth first spanning tree" of G

 Level i in this tree are exactly those vertices u
such that the shortest path (in G, not just the tree)
from the root v is of length i.

 All non-tree edges join vertices on the same or
adjacent levels

37

BFS Application: Shortest Paths
1

2 3

10

5

4

9

12
8

13

6
7

11

0

1

2

3

4
can label by distances from start

all edges connect same/adjacent levels

Tree (solid edges)
gives shortest
paths from
start vertex

38

Why fuss about trees?

 Trees are simpler than graphs
 Ditto for algorithms on trees vs on graphs
 So, this is often a good way to approach a

graph problem: find a “nice” tree in the graph,
i.e., one such that non-tree edges have some
simplifying structure

 E.g., BFS finds a tree s.t. level-jumps are
minimized

 DFS (next) finds a different tree, but it also has
interesting structure…

39

Graph Search Application:
Connected Components

 Want to answer questions of the form:
 given vertices u and v, is there a

path from u to v?

 Idea: create array A such that
A[u] = smallest numbered vertex

 that is connected to u
 question reduces to whether A[u]=A[v]?

Q: Why not
create 2-d
array
Path[u,v]?

40

Graph Search Application:
Connected Components

 initial state: all v undiscovered
for v=1 to n do

if state(v) != fully-explored then
BFS(v): setting A[u] ←v for each u found
(and marking u discovered/fully-explored)

endif
endfor

 Total cost: O(n+m)
 each edge is touched a constant number of times
 works also with DFS

41

Depth-First Search

 Follow the first path you find as far as you
can go

 Back up to last unexplored edge when
you reach a dead end, then go as far you
can

 Naturally implemented using recursive
calls or a stack

42

DFS(v) - explicit stack

Global Initialization: mark all vertices "undiscovered"
DFS(v)

mark v "discovered"
push (v,1) onto empty stack
while stack not empty

(u,i) = pop(stack)
for (; i ≤ # of neighbors of u; i++)

x = ith edge on u’s edge list
if (x is undiscovered)

mark x “discovered”
push (u,i+1) // save info to resume with u’s next edge,
u = x // after exploring from x,
i = 1 // (starting with its first edge)

mark u completed

Exercise: modify to
compute vertex
numbering

Idea: stack of unfinished
vertices, plus pointers into
their edge lists to say what
work remains to finish.

43

DFS(v) – Recursive version

Global Initialization:
mark all vertices v "undiscovered” via v.dfs# = -1
dfscounter = 0

DFS(v)
v.dfs# = dfscounter++ // mark v “discovered”, & number it
for each edge (v,x)

if (x.dfs# = -1) // tree edge (x previously undiscovered)
DFS(x)

else … // code for back-, fwd-, parent,
// edges, if needed

// mark v “completed,” if needed

45

DFS(A)
A,1

B J

I

H

C

G

FD

E

K L

M

Suppose edge lists
at each vertex
are sorted
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack
(Edge list):

A (B,J)

46

DFS(A)
A,1

B,2 J

I

H

C

G

FD

E

K L

M

Suppose edge lists
at each vertex
are sorted
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)

47

DFS(A)
A,1

B,2 J

I

H

C,3

G

FD

E

K L

M

Suppose edge lists
at each vertex
are sorted
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)

48

DFS(A)
A,1

B,2 J

I

H

C,3

G

FD,4

E

K L

M

Suppose edge lists
at each vertex
are sorted
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
D (C,E,F)

49

DFS(A)
A,1

B,2 J

I

H

C,3

G

FD,4

E,5

K L

M

Suppose edge lists
at each vertex
are sorted
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
D (C,E,F)
E (D,F)

50

DFS(A)
A,1

B,2 J

I

H

C,3

G

F,6D,4

E,5

K L

M

Suppose edge lists
at each vertex
are sorted
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
D (C,E,F)
E (D,F)
F (D,E,G)

51

DFS(A)
A,1

B,2 J

I

H

C,3

G,7

F,6D,4

E,5

K L

M

Suppose edge lists
at each vertex
are sorted
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
D (C,E,F)
E (D,F)
F (D,E,G)
G(C,F)

52

DFS(A)
A,1

B,2 J

I

H

C,3

G,7

F,6D,4

E,5

K L

M

Suppose edge lists
at each vertex
are sorted
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
D (C,E,F)
E (D,F)
F (D,E,G)
G(C,F)

53

DFS(A)
A,1

B,2 J

I

H

C,3

G,7

F,6D,4

E,5

K L

M

Suppose edge lists
at each vertex
are sorted
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
D (C,E,F)
E (D,F)
F (D,E,G)

54

DFS(A)
A,1

B,2 J

I

H

C,3

G,7

F,6D,4

E,5

K L

M

Suppose edge lists
at each vertex
are sorted
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
D (C,E,F)
E (D,F)

55

DFS(A)
A,1

B,2 J

I

H

C,3

G,7

F,6D,4

E,5

K L

M

Suppose edge lists
at each vertex
are sorted
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
D (C,E,F)

56

DFS(A)
A,1

B,2 J

I

H

C,3

G,7

F,6D,4

E,5

K L

M

Suppose edge lists
at each vertex
are sorted
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)

57

DFS(A)
A,1

B,2 J

I

H

C,3

G,7

F,6D,4

E,5

K L

M

Suppose edge lists
at each vertex
are sorted
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)

58

DFS(A)
A,1

B,2 J

I

H,8

C,3

G,7

F,6D,4

E,5

K L

M

Suppose edge lists
at each vertex
are sorted
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)

59

DFS(A)
A,1

B,2 J

I,9

H,8

C,3

G,7

F,6D,4

E,5

K L

M

Suppose edge lists
at each vertex
are sorted
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
I (H)

60

DFS(A)
A,1

B,2 J

I,9

H,8

C,3

G,7

F,6D,4

E,5

K L

M

Suppose edge lists
at each vertex
are sorted
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
I (H)

61

DFS(A)
A,1

B,2 J

I,9

H,8

C,3

G,7

F,6D,4

E,5

K L

M

Suppose edge lists
at each vertex
are sorted
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)

62

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K L

M

Suppose edge lists
at each vertex
are sorted
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
J (A,B,H,K,L)

63

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L

M

Suppose edge lists
at each vertex
are sorted
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
J (A,B,H,K,L)
K (J,L)

64

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M

Suppose edge lists
at each vertex
are sorted
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
J (A,B,H,K,L)
K (J,L)
L (J,K,M)

65

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Suppose edge lists
at each vertex
are sorted
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
J (A,B,H,K,L)
K (J,L)
L (J,K,M)
M(L)

66

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Suppose edge lists
at each vertex
are sorted
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
J (A,B,H,K,L)
K (J,L)
L (J,K,M)

67

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Suppose edge lists
at each vertex
are sorted
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
J (A,B,H,K,L)
K (J,L)

68

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Suppose edge lists
at each vertex
are sorted
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
J (A,B,H,K,L)

69

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Suppose edge lists
at each vertex
are sorted
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
J (A,B,H,K,L)

70

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Suppose edge lists
at each vertex
are sorted
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)

71

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Suppose edge lists
at each vertex
are sorted
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)

72

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Suppose edge lists
at each vertex
are sorted
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)

73

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Suppose edge lists
at each vertex
are sorted
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)

74

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Suppose edge lists
at each vertex
are sorted
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)

75

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Suppose edge lists
at each vertex
are sorted
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)

76

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Suppose edge lists
at each vertex
are sorted
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

TA-DA!!

77

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Edge code:
Tree edge
Back edge

78

DFS(A) A,1

B,2
J,10

I,9

H,8

C,3

G,7

F,6

D,4

E,5

K,11 L,12

M,13

Edge code:
Tree edge
Back edge

79

DFS(A) A,1

B,2

J,10

I,9

H,8

C,3

G,7

F,6

D,4

E,5

K,11
L,12

M,13

Edge code:
Tree edge
Back edge

80

DFS(A)
A,1

B,2

J,10

I,9

H,8

C,3

G,7

F,6

D,4

E,5

K,11
L,12

M,13

Edge code:
Tree edge
Back edge

81

DFS(A)
A,1

B,2

J,10

I,9

H,8

C,3

G,7

F,6

D,4

E,5

K,11

L,12

M,13

Edge code:
Tree edge
Back edge

82

DFS(A)
A,1

B,2

J,10

I,9

H,8

C,3

G,7F,6

D,4

E,5 K,11

L,12

M,13

Edge code:
Tree edge
Back edge

83

DFS(A)
A,1

B,2

J,10

I,9

H,8

C,3

G,7

F,6

D,4

E,5

K,11
L,12

M,13

Edge code:
Tree edge
Back edge
No Cross Edges!

84

Properties of (Undirected) DFS(v)

 Like BFS(v):
 DFS(v) visits x if and only if there is a path in G from

v to x (through previously unvisited vertices)
 Edges into then-undiscovered vertices define a tree

– the "depth first spanning tree" of G
 Unlike the BFS tree:
 the DF spanning tree isn't minimum depth
 its levels don't reflect min distance from the root
 non-tree edges never join vertices on the same or

adjacent levels
 BUT…

85

Non-tree edges

 All non-tree edges join a vertex and one
of its descendents/ancestors in the DFS
tree

 No cross edges!

86

Why fuss about trees (again)?

 As with BFS, DFS has found a tree in the
graph s.t. non-tree edges are “simple”--
only descendant/ancestor

87

!

M(v) =
L(v) if v is a leaf

min(L(v), min
w a child of v M(w)) otherwise

"

$

%
&
'

A simple problem on trees

Given: tree T, a value L(v) defined for
every vertex v in T
Goal: find M(v), the min value of L(v)
anywhere in the subtree rooted at v
(including v itself).
How? Depth first search, using:

88

Application: Articulation Points

 A node in an undirected graph is an
articulation point iff removing it
disconnects the graph

 articulation points represent
vulnerabilities in a network – single points
whose failure would split the network into
2 or more disconnected components

89Ram Samudrala/Jason McDermottArticulation point proteins

Identifying key proteins on the anthrax predicted network

90

Articulation Points
1

2 10

9

8

3

7

6
4

5

11
12

13

articulation point
iff its removal

disconnects
the graph

91

Articulation Points
1

2 10

9

8

3

7

6
4

5

11
12

13

93

Simple Case: Artic. Pts in a tree

 Leaves -- never articulation points
 Internal nodes -- always articulation points
 Root -- articulation point if and only if two

or more children

 Non-tree: extra edges remove some
articulation points (which ones?)

94

Articulation Points from DFS

 Root node is an articulation point
iff it has more than one child

 Leaf is never an articulation point

∃ some child y of u s.t.
no non-tree edge goes
above u from y or below

non-leaf, non-root
node u is an
articulation point⇔

u
x

If removal of u does NOT
separate x, there must be an
exit from x's subtree. How?
Via back edge.

y

95

Articulation Points:
the "LOW" function

 Definition: LOW(v) is the lowest dfs# of any
vertex that is either in the dfs subtree rooted at
v (including v itself) or connected to a vertex in
that subtree by a back edge.

 Key idea 1: if some child x of v has LOW(x) ≥
dfs#(v) then v is an articulation point (excl. root)

 Key idea 2: LOW(v) =
 min ({dfs#(v)} ∪ {LOW(w) | w a child of v } ∪
 { dfs#(x) | {v,x} is a back edge from v })

trivial

critic
al

96

DFS(v) for
Finding Articulation Points

Global initialization: v.dfs# = -1 for all v.
DFS(v)
v.dfs# = dfscounter++
v.low = v.dfs# // initialization
for each edge {v,x}

if (x.dfs# == -1) // x is undiscovered
DFS(x)
v.low = min(v.low, x.low)
if (x.low >= v.dfs#)

print “v is art. pt., separating x”
else if (x is not v’s parent)

v.low = min(v.low, x.dfs#)

Equiv: “if({v,x}
is a back edge)”
Why?

Except for root. W
hy?

97

Articulation Points
A

B

HG

E

C

K

I

D

F

J
L

M

Vertex DFS # Low
A
B
C
D
E
F
G
H
I
J
K
L
M

98

Articulation Points
A

B

HG

E

C

K

I

D

F

J
L

M

1

13

12

7

11
6

10
95

84

3

2 Vertex DFS # Low
A 1 1
B 2 1
C 3 1
D 4 3
E 8 1
F 5 3
G 9 9
H 10 1
I 6 3
J 11 10
K 7 3
L 12 10
M 13 13

99

Articulation Points

A

B

H

FC

D E

Vertex DFS # Low
A
B
C
D
E
F
G
H

AP’s:
BCC’s:
 1)
 2)
 3)
 4) G

100

Articulation Points

A

B

H

FC

D E

1

6

85 74

3

2

Vertex DFS # Low
A 1 1
B 2 1
C 3 3
D 4 3
E 5 3
F 6 1
G 7 6
H 8 6

AP’s: C, B, F
BCC’s:
 1) C--D, D--E, E--C
 2) B--C
 3) A--B, B--F, F--A
 4) F--G, G--H, H--FG

