CSE 417: Algorithms and Computational Complexity

Winter 2005 Graphs and Graph Algorithms Larry Ruzzo

Kevin Kline was in "French Kiss" with Meg Ryan

Meg Ryan was in "Sleepless in Seattle" with Tom Hanks

Tom Hanks was in "Apollo 13" with Kevin Bacon

Objects & Relationships

The Kevin Bacon Game:

Actors

- Two are related if they've been in a movie together
- Exam Scheduling:
 - Classes
 - Two are related if they have students in common
- Traveling Salesperson Problem:
 - Cities
 - Two are related if can travel directly between them

Graphs

- An extremely important formalism for representing (binary) relationships
- Objects: "vertices", aka "nodes"
- Relationships between pairs: "edges", aka "arcs"
- Formally, a graph G = (V, E) is a pair of sets, V the vertices and E the edges

Graphs don't live in Flatland

Geometrical drawing is mentally convenient, but mathematically irrelevant: 4 drawings, 1 graph.

Specifying undirected graphs as input

What are the vertices?Explicitly list them:

{"A", "7", "3", "4"}

• What are the edges?

- Either, set of edges {{A,3}, {7,4}, {4,3}, {4,A}}
- Or, (symmetric) adjacency matrix:

Specifying directed graphs as input

What are the vertices Explicitly list them: {"A", "7", "3", "4"} What are the edges Either, set of directed

- edges: {(A,4), (4,7), (4,3), (4,A), (A,3)}
- Or, (nonsymmetric) adjacency matrix:

Vertices vs # Edges

- Let G be an undirected graph with n vertices and m edges
- How are n and m related?
- Since
 - every edge connects two *different* vertices (no loops), and
 - no two edges connect the same two vertices (no multi-edges),

it must be true that: C

$$0 \le m \le n(n-1)/2 = O(n^2)$$

More Cool Graph Lingo

- A graph is called *sparse* if m << n², otherwise it is *dense*
 - Boundary is somewhat fuzzy; O(n) edges is certainly sparse, $\Omega(n^2)$ edges is dense.
- Sparse graphs are common in practice
 - E.g., all planar graphs are sparse
 - Q: which is a better run time, O(n+m) or $O(n^2)$?

A: $O(n+m) = O(n^2)$, but n+m usually way better!

Representing Graph **G** = (V,E) **n** vertices, **m** edges

- Vertex set $V = \{v_1, ..., v_n\}$
- Adjacency Matrix A
 - A[i,j] = 1 iff $(v_i, v_j) \in E$
 - Space is n² bits

 $m << n^2$

0

- Advantages:
 - O(1) test for presence or absence of edges.
 - compact if in packed binary form for large m
- Disadvantages: inefficient for sparse graphs

Representing Graph **G=(V,E) n** vertices, **m** edges

Adjacency List:
O(n+m) words
Advantages:
Compact for sparse graphs
Easily see all edges
Disadvantages

- More complex data structure
- no O(1) edge test

Representing Graph **G=(V,E) n** vertices, **m** edges

Adjacency List:
 O(n+m) words

Back- and cross pointers more work to build, but allow easier traversal and deletion of edges, *if needed*, (don't bother if not)

Graph Traversal

Learn the basic structure of a graph
 "Walk," <u>via edges</u>, from a fixed starting vertex v to all vertices reachable from v

- Three states of vertices
 - undiscovered
 - discovered
 - I fully-explored

Breadth-First Search

Completely explore the vertices in order of their distance from v

Naturally implemented using a queue

BFS(v)

Global initialization: mark all vertices "undiscovered" BFS(v)mark v "discovered" queue = vwhile queue not empty u = remove_first(queue) for each edge {u,x} if (x is undiscovered) **Exercise:** modify code to number mark x discovered vertices & append x on queue

mark u completed

compute level numbers

BFS analysis

Each edge is explored once from each end-point (at most)

Each vertex is discovered by following a different edge

Total cost O(m) where m=# of edges

Properties of (Undirected) BFS(v)

- BFS(v) visits x if and only if there is a path in G from v to x.
- Edges into then-undiscovered vertices define a tree – the "breadth first spanning tree" of G
- Level i in this tree are exactly those vertices u such that the shortest path (in G, not just the tree) from the root v is of length i.
- All non-tree edges join vertices on the same or adjacent levels

BFS Application: Shortest Paths

Why fuss about trees?

- Trees are simpler than graphs
- Ditto for algorithms on trees vs on graphs
- So, this is often a good way to approach a graph problem: find a "nice" tree in the graph, i.e., one such that non-tree edges have some simplifying structure
- E.g., BFS finds a tree s.t. level-jumps are minimized
- DFS (next) finds a different tree, but it also has interesting structure...

Graph Search Application: Connected Components

• Want to answer questions of the form:

given vertices u and v, is there a path from u to v?

Idea: create array A such that
 A[u] = smallest numbered vertex
 that is connected to u
 question reduces to whether A[u]=A[v]?

Q: Why not create 2-d array Path[u,v]?

Graph Search Application: Connected Components

I initial state: all v undiscovered for v=1 to n do if state(v) != fully-explored then BFS(v): setting A[u] ←v for each u found (and marking u discovered/fully-explored) endif endfor

Total cost: O(n+m)

- each edge is touched a constant number of times
- works also with DFS

Depth-First Search

- Follow the first path you find as far as you can go
- Back up to last unexplored edge when you reach a dead end, then go as far you can
- Naturally implemented using recursive calls or a stack

Exercise: modify to compute vertex numbering

DFS(v) - explicit stack

Global Initialization: mark all vertices "undiscovered" DFS(v)

```
Idea: stack of unfinished
mark v "discovered"
                                            vertices, plus pointers into
push (v,1) onto empty stack
                                            their edge lists to say what
while stack not empty
                                            work remains to finish.
    (u,i) = pop(stack)
    for (; i \le # of neighbors of u; i + +)
      x = i^{th} edge on u's edge list
      if (x is undiscovered)
             mark x "discovered"
             push(u,i+1)
                               // save info to resume with u's next edge,
                               // after exploring from x,
             U = X
             i = 1
                               // (starting with its first edge)
                                                                       42
    mark u completed
```

DFS(v) – Recursive version

```
Global Initialization:
mark all vertices v "undiscovered" via v.dfs# = -1
dfscounter = 0
```

DFS(v)

v.dfs# = dfscounter++ // mark v "discovered", & number it for each edge (v,x)

if (x.dfs# = -1) // tree edge (x previously undiscovered)
 DFS(x)
 // code for books find the event

else ...

// code for back-, fwd-, parent,
// edges, if needed

// mark v "completed," if needed

Properties of (Undirected) DFS(v)

Like BFS(v):

- DFS(v) visits x if and only if there is a path in G from v to x (through previously unvisited vertices)
- Edges into then-undiscovered vertices define a tree – the "depth first spanning tree" of G
- Unlike the BFS tree:
 - the DF spanning tree isn't minimum depth
 - its levels don't reflect min distance from the root
 - non-tree edges never join vertices on the same or adjacent levels

BUT...

Non-tree edges

All non-tree edges join a vertex and one of its descendents/ancestors in the DFS tree

Why fuss about trees (again)?

As with BFS, DFS has found a tree in the graph s.t. non-tree edges are "simple"-- only descendant/ancestor

A simple problem on trees

Given: tree T, a value L(v) defined for every vertex v in T **Goal:** find M(v), the min value of L(v) anywhere in the subtree rooted at v (including v itself). **How?** Depth first search, using:

 $M(v) = \begin{cases} L(v) & \text{if } v \text{ is a leaf} \\ \min(L(v), \min_{w \text{ a child of } v} M(w)) & \text{otherwise} \end{cases}$

Application: Articulation Points

A node in an undirected graph is an articulation point iff removing it disconnects the graph

articulation points represent
 vulnerabilities in a network – single points
 whose failure would split the network into
 2 or more disconnected components

Articulation Points

Articulation Points

Simple Case: Artic. Pts in a tree

- Leaves -- never articulation points
- Internal nodes -- always articulation points
- Root -- articulation point if and only if two or more children

Non-tree: extra edges remove some articulation points (which ones?)

Articulation Points from DFS

- Root node is an articulation point iff it has more than one child
- Leaf is never an articulation point

non-leaf, non-root node u is an articulation point

I some child y of u s.t. no non-tree edge goes above u from y or below If removal of u does NOT separate x, there must be an exit from x's subtree. How? Via back edge.

Х

Articulation Points: the "LOW" function

Definition: LOW(v) is the lowest dfs# of any vertex that is either in the dfs subtree rooted at v (including v itself) or connected to a vertex in that subtree by a back edge.

Key idea 1: if some child x of v has LOW(x) ≥ dfs#(v) then v is an articulation point (excl. root)

Key idea 2: LOW(v) = min ({dfs#(v)} ∪ {LOW(w) | w a child of v } ∪ { dfs#(x) | {v,x} is a back edge from v })

trivial

DFS(v) for Finding Articulation Points

```
Global initialization: v.dfs = -1 for all v.
DFS(v)
v.dfs# = dfscounter++
                             // initialization
v.low = v.dfs#
for each edge \{v,x\}
     if (x.dfs # == -1)
                             // x is undiscovered
        DFS(x)
        v.low = min(v.low, x.low)
        if (x.low \ge v.dfs#)
           print "v is art. pt., separating x"
                                               Equiv: "if( {v,x}
     else if (x is not v's parent)
                                               is a back edge)"
        v.low = min(v.low, x.dfs#)
                                               Why?
```

Except for root. Why?

Articulation Points

Vertex	DFS #	Low
Α	1	1
B	2	1
C	3	3
D	4	3
E	5	3
F	6	1
G	7	6
н	8	6

AP's: C, B, F
BCC's:
1) CD, DE, EC
2) BC
3) AB, BF, FA
4) FG, GH, HF