CSE 417: Algorithms and
Computational Complexity

Winter 2005
Graphs and Graph Algorithms
Larry Ruzzo

Objects & Relationships

The Kevin Bacon Game:

Actors

Two are related if they’ve been in a movie together
Exam Scheduling:

Classes

Two are related if they have students in common
Traveling Salesperson Problem:

Cities

Two are related if can travel directly between them

Graphs

An extremely important formalism for
representing (binary) relationships

Objects: “vertices”, aka “nodes”

Relationships between pairs: “edges”,
aka “arcs”

Formally, a graph G = (V, E) is a pair of
sets, V the vertices and E the edges

Undirected Graph G = (V,E)

e

Undirected Graph G = (V,E)

/
= I
@\
O—
0 7
[] ®

Undirected Graph G = (V,E)

Undirected Graph G = (V,E)

Undirected Graph G = (V,E)

Graphs don’t live in Flatland

Geometrical drawing is mentally
convenient, but mathematically
irrelevant: 4 drawings, 1 graph.

A

@ 4

Directed Graph G = (V,E)

/@6/63\@
/\ =
5 b 6

e

Directed Graph G = (V,E)
O

v
/@6 \‘@
1 S

v

Directed Graph G = (V,E)
O

/@6/\@
(3)
I\/@@
ONNG
/] ®

® ®

v

Directed Graph G = (V,E)
O

rd

P

9 “loop”

I\ /@ﬂb @‘

ollNc

‘o

O O

v

14

Directed Graph G = (V,E)
O

P

G f

\ ‘ @‘ o

z g

©®

i

Specifying undirected
graphs as input

What are the vertices?

Explicitly list them:
{“A”, “7”, “3”, “4”}
What are the edges?

Either, set of edges A 7 3 4
WASHATAL43L{4AL 7
Or, (symmetric) X
adjacency matrix: 700 0 0 1
311 0 0 1
411 1 1 O

16

Specifying directed
graphs as input

What are the vertices
Explicitly list them:
{“A”, “7”, “3”, “4”}

What are the edges

Either, set of directed
edges: {(A,4), (4,7),
(4,3), (4,A), (A,3)}

Or, (honsymmetric)
adjacency matrix:

AN w39 >

—_ O O Ol

—_— O O Ol

—_—O O = W

17

S OO =B

Vertices vs # Edges

Let G be an undirected graph with n vertices

and m edges

How are n and m related?

Since

every edge connects two different vertices (no

loops), and

no two edges connect the same two vertices (no

multi-edges),
It must be true that:

0 =<m =< n(n-1)/2 = O(n?)

18

More Cool Graph Lingo

A graph is called sparse if m << n?, otherwise it
IS dense

Boundary is somewhat fuzzy; O(n) edges is certainly
sparse, Q(n?) edges is dense.

Sparse graphs are common in practice
E.g., all planar graphs are sparse

Q: which is a better run time, O(n+m) or O(n2)?

A: O(n+m) = O(n?), but n+m usually way better!

19

Representing Graph G = (V,E)
n vertices, m edges

?)

Vertex set V ={v,, ..., v}

Adjacency Matrix A A7 3 4
Ali,j] = 1 iff (v,,v) EE e o o
Space is n? bits j i ‘1) ‘1) (1)

Advantages:
O(1) test for presence or absence of edges.
compact if in packed binary form for large m

Disadvantages: inefficient for sparse graphs

> M << N2

Representing Graph G=(V,E)
n vertices, m edges

4> 77
Adjacency List: AN g g e s g
O(n+m) words Vo 1i1> 37
Advantages: Vo> 2 i4>[5i4>{6]

Compact for
sparse graphs

Easily see all edges

Disadvantages
More complex data structure
no O(1) edge test

21

Representing Graph G=(V,E)
n vertices, m edges

: , Slo 1514 i1 77
Adjacency List: Vi 2 A4 L 7
ST 053 7
O(n+m) words Vo1 i123 7
Vo[> 2 i 5567
v, [

Back- and cross pointers more work to build,
but allow easier traversal and deletion of edges,
if needed, (don’t bother if not)

22

Graph Traversal

Learn the basic structure of a graph

“Walk,” via edges, from a fixed starting
vertex v to all vertices reachable from v

Three states of vertices
undiscovered
discovered
fully-explored

23

Breadth-First Search

Completely explore the vertices in order
of their distance from v

Naturally implemented using a queue

24

BFS(v)

Global initialization: mark all vertices "undiscovered"

BFS(v)
mark v "discovered"
gqueue =V

while queue not empty
u = remove_first(queue)
for each edge {u,x}

if (x is undiscovered) Exercise: modify
mark x discovered code to number
append x on queue vertices &
mark u completed compute level
numbers

BFS(v)

Queue:

BFS(v)

Queue:
23

BFS(v)

Queue:
34

BFS(v)

BFS(v)

BFS(v)

Queue:
8910 11

BFS(v)

Queue:
101112 13

BFS(v)

BFS analysis

Each edge is explored once from each
end-point (at most)

Each vertex is discovered by following a
different edge

Total cost O(m) where m=# of edges

35

PI‘OPEI‘tiES of (Undirected) BFS(V)

BFS(v) visits x if and only if there is a path in G
from v to Xx.

Edges into then-undiscovered vertices define a
free — the "breadth first spanning tree" of G

Level i in this tree are exactly those vertices u
such that the shortest path (in G, not just the tree)
from the root v is of length i.

Allnon-tree edges join vertices on the same or
adjacent levels

36

BFS Application: Shortest Paths

Tree (solid edges)
gives shortest
paths from
start vertex

37

Why fuss about trees?

Trees are simpler than graphs
Ditto for algorithms on trees vs on graphs

So, this is often a good way to approach a
graph problem: find a “nice” tree in the graph,
l.e., one such that non-tree edges have some
simplifying structure

E.g., BFS finds a tree s.t. level-jumps are
minimized

DFS (next) finds a different tree, but it also has
interesting structure...

38

Graph Search Application:
Connected Components

Want to answer questions of the form:

given vertices u and v, is there a
path from u to v?

Q: Why not
|dea: create array A such that create 2-d

arra
A[u] = smallest numbered vertex Pathy[u,v]?

that is connected to u
guestion reduces to whether A[u]=A[v]?

39

Graph Search Application:
Connected Components

initial state: all v undiscovered
forv=1tondo
If state(v) != fully-explored then

BFS(v): setting A[u] <V for each u found
(and marking u discovered/fully-explored)
endif
endfor

Total cost: O(n+m)
each edge is touched a constant number of times
works also with DFS

40

Depth-First Search

Follow the first path you find as far as you
can go

Back up to last unexplored edge when
you reach a dead end, then go as far you
can

Naturally implemented using recursive
calls or a stack

41

Exercise: modify to
compute vertex

DFS(v) - explicit stack [numbering

Global Initialization: mark all vertices "undiscovered"
DFS(v)

mark v "discovered"
push (v,1) onto empty stack
while stack not empty
(u,i) = pop(stack)
for (;i = # of neighbors of u; 4+)
x = it edge on u’s edge Ji
if (x is undiscovered)

mark x “discqyered”
push (u,i+1) // save info to resume with u’s next edge,

u=x /[after exploring from X,
i =1 / (starting with its first edge)

mark u completed

|dea: stack of unfinished
vertices, plus pointers into
their edge lists to say what
work remains to finish.

42

DFS(v) — Recursive version

Global Initialization:
mark all vertices v "undiscovered” via v.dfs# = -1
dfscounter =0

DFS(v)
v.dfs# = dfscounter++ // mark v “discovered”, & number it
for each edge (v,x)
if (x.dfs# =-1) // tree edge (x previously undiscovered)
DFS(x)
else ... // code for back-, fwd-, parent,
// edges, if needed

// mark v “completed,” if needed 4

Color code:

undiscovered
DFS (A) discovered
fully-explored
Suppose edge lists) 4

. Call Stack

at each vertex K . <
aresorted [B Y} @ (Edge list):
alphabeticall

P Y i T A (B,J)

I
‘e,
.
Y

@ 45

Color code:

undiscovered
DFS (A) discovered
fully-explored
Suppose edge lists
at epapch vertgx Call Stac!c
are sorted (Edge list)
alphabetically

¢ . .
o N . A (B J)
& L * y
L4 [] *
o n . .
. - .
o - *))
” - “
|
O. = "
* v R [] -
* L4 n -
* & n LS
* Iy .
o hd

I
‘e,
.
Y

-
*
-
%
0‘ o
46

Color code:

undiscovered
DFS (A) discovered
fully-explored
Suppose edge lists . .
ateachvertex = =~ . Call Stack:
aresorted [Verrrrrereeen @ (Edge list)
alphabetically
il A (BJ)
B (X.2.J)
C(B,D,G,H)

.
‘e,
.
.
Y

-
*
*
%
* o
47

Color code:

undiscovered
DFS (A) discovered
fully-explored
Suppose edge lists) _
ateachvertex = =~ . Call Stack:
aresorted [R9 Jeeerrrenen. @ (Edge list)
alphabetically
- A (BJ)
S0 B (#,2.J)
g A Y C (BJ,G.H)
@ : :: :: ‘:" D (CyE,F)

. .
., . R
¢ .
., .
. -
@ 48

Color code:

undiscovered
DFS (A) discovered
fully-explored
Suppose edge lists
at ggch vert(gx """"" Call Stack:
aresorted [R9 Jeeerrrenen. @ (Edge list)
alphabetically N AE)
B (X.2.J)
4 C (B..G,H)
~~~~~~~~ S D (Z.E.F)
ONONOIONN

49




Color code:

undiscovered
DFS (A) discovered

fully-explored
Suppose edge lists ) _
ateachvertex = =~ . Call Stack:
aresorted  [R9 Jeeerrrenen. @ (Edge list)
alphabetically

. . B,J)

(
E%SZ,J)

.
‘e,
.
.
Y

50




Color code:

undiscovered

DFS(A)

Suppose edge lists
at each vertex

are sorted
alphabetically

0.’
L 4

...
...
L4

discovered
fully-explored

Call Stack:
(Edge list)

A (BJ)

B (XZ.J)
C (B,P,G.H)
D (Z.£,F)

E (BF)

F (DE.Z)
G(C,F)

51




Color code:

undiscovered
DFS (A) discovered
fully-explored
Suppose edge lists
at ggch vertgx """"" Call Stack:
aresorted (R Feerrrrrenns @ (Edge list)
| .
alphabetically N A @)
B (X.Z.J)
g C (B..G.H)
N :: : "‘ D ( g, z’ F)
E (BF)
F (D,E.@&)
; G(Z.F)

52




Color code:

undiscovered
DFS(A) discovered
fully-explored
Suppose edge lists
at ggch vertgx """"" Call Stack:
aresorted  [R9 Jeeerrrenen. @ (Edge list)
alphabetically N AE)
B (X.Z,J)
.. C (B.,G,H)
R S0 D (Z,E,F)
' E (B.F)
& ‘OB

93




Color code:

undiscovered
DFS (A) discovered
fully-explored
Suppose edge lists
at ggch vertgx """"" Call Stack:
aresorted  [R9 Jeeerrrenen. @ (Edge list)
alphabetically N AE)
B (X.2.J)
. C (B.J,G,H)
......... S Al D (Z.E.F)
SROJOION

o4




Color code:

undiscovered
DFS (A) discovered
fully-explored
Suppose edge lists . .
ateachvertex = =~ . Call Stack:
aresoted (v Moo @ (Edge list)
alphabetically
S A (BJ)
S B (#,2,J)
‘e, .': é “\’ C (B’WiGaH)
! ........ : :: :: ‘:" D (g !z ’y)

95




Color code:

undiscovered
DFS (A) discovered

fully-explored
Suppose edge lists . .
ateachvertex = =~ . Call Stack:
aresorted  [R9 Jeeerrrenen. @ (Edge list)
alphabetically

TT A (BJ)

B (X.Z.J)
C(B.B.G.H)

...
...
L4

56




Color code:

undiscovered
DFS (A) discovered

fully-explored
Suppose edge lists . .
ateachvertex = =~ . Call Stack:
aresorted  [R9 Jeeerrrenen. @ (Edge list)
alphabetically

TT A (BJ)

B (X.Z.J)
C(Bp.a.H)

...
...
L4

o7




DFS(A)

Suppose edge lists
at each vertex

are sorted
alphabetically

0.’
L 4

Color code:
undiscovered

discovered

fully-explored

Call Stack:
(Edge list)

J

2.J)
p.@.H)
1J)

NE®

TO >
O

58




DFS(A)

Suppose edge lists
at each vertex

are sorted
alphabetically

0.’
L 4

Color code:
undiscovered

discovered

fully-explored

Call Stack:
(Edge list)

.
~

J)
,%'M)

—ITOW>
VREW
SR

E=

99




DFS(A)

Suppose edge lists
at each vertex

are sorted
alphabetically

0.’
L 4

Color code:
undiscovered

discovered

fully-explored

Call Stack:
(Edge list)

.
~

J)
,%'M)

—ITOW>
VREW
SR

Ex

60




Color code:

undiscovered
DFS (A) discovered
fully-explored
Suppose edge lists ) _
ateachvertex = =~ . Call Stack:
aresorted  [R9 Jeeerrrenen. @ (Edge list)
alphabetically
S A (B.J)
s E ‘\‘ B (%g 1J)
i “’\ C (B',w ’g aH)
, H(Z /)

61




Color code:
undiscovered

DFS (A) discovered

@ fully-explored
Suppose edge lists .

ateachvertex =" ™. Call Stack:

are sorted @ .............. @ (Edge list)
alphabetically /

(
(X.2,J)
(B.B.@,H)

(214

A
B
C
H
J (ABHKL)

B
©

@ 62



Color code:
undiscovered

DFS (A) discovered
@ fully-explored
Suppose edge lists . _
at each vertex ‘e, Call Stack:

are sorted @ ......... @ (Edge list)
alphabetically /

A

B (X.Z.J)
C (B.2.8.H)
H(Z)4)

(c3, | e
O W OO
K (J,L)

@ 63



Color code:
undiscovered

DFS (A) discovered
@ fully-explored
Suppose edge lists . _
at each vertex ‘e, Call Stack:

are sorted @ ......... @ (Edge list)
alphabetically /

A

B (X.2.J)
C (B.1.8.H)
H(Z)4)

J (KBHKL)

K (ML
L (J,K,M)

(c2, 7
2 64



DFS(A)

Suppose edge lists
at each vertex

are sorted
alphabetically

Color code:

undiscovered

discovered

fully-explored

.
2
.

Call Stack:
(Edge list)

A(BJ)

B (X.2,J)

C (BW.&W
H (2 .X4)

J (HBHKL)
K(HLY

L (JKM)
M(L)

65




DFS(A)

Suppose edge lists
at each vertex

are sorted
alphabetically

Color code:

undiscovered

discovered

fully-explored

.
2
.

Call Stack:
(Edge list)

A (BJ)

B (X.2.J)

C (B.2.8.H)
H(Z)4)

J (KBHKL)
K(HLY

L (JKM)

66




DFS(A)

Suppose edge lists
at each vertex

are sorted
alphabetically

Color code:

undiscovered

discovered

fully-explored

.
2
.

Call Stack:
(Edge list)

A (BJ)

B (X.2.J)

C (B.2.8.H)
H(Z)4)

J (KBHKL)
K (ML

67




Color code:
undiscovered

DFS (A) discovered

@ fully-explored
Suppose edge lists

at each vertex ‘oo, Call Stack:
are sorted @ ......... @ (Edge list)
alphabetically
%, A (BJ)
%, B (X,Z,J)
K C (B.J2.8.H)

H(Z)4)

©
@ J (WEHKL)

@ 68



Color code:
undiscovered

DFS (A) discovered

@ fully-explored
Suppose edge lists

at each vertex ‘oo, Call Stack:
are sorted @ ......... @ (Edge list)
alphabetically
%, A (BJ)
%, B (X,Z,J)
K C (B.J2.8.H)

H(Z)4)

©
e J WBHKY

@ 69



Color code:
undiscovered

DFS (A) discovered

@ fully-explored
Suppose edge lists

at each vertex ‘oo, Call Stack:
are sorted @ ......... @ (Edge list)
alphabetically
%, A (BJ)
%, B (X,Z,J)
K C (B.J2.8.H)

H(Z )4

@ .
.
.
- .

o @ @

@ 70



Color code:
undiscovered

DFS (A) discovered

@ fully-explored
Suppose edge lists

at each vertex ‘oo, Call Stack:
are sorted @ ......... @ (Edge list)
alphabetically
%, A (BJ)
%, B (X,Z,J)
K C (B.12,8.H)

@ .
.
.
- .

o @ @

@ 71



Color code:
undiscovered

DFS (A) discovered

@ fully-explored
Suppose edge lists

at each vertex ‘oo, Call Stack:
are sorted @ (Edge list)
alphabetically

B (X2.J)

I A (BJ)

@ .

.

.

= .
@ 72



Color code:
undiscovered

DFS (A) discovered

@ fully-explored
Suppose edge lists

at each vertex ‘oo, Call Stack:
are sorted @ (Edge list)
alphabetically

B (KZH)

I A (BJ)

@ .

.

.

= .
@ 73



Color code:
undiscovered

DFS (A) discovered

@ fully-explored
Suppose edge lists

2

at each vertex ‘e, Call Stack:

are sorted @ (Edge list)
alphabetically

I A (BJ)

@ .

.

.

- .
@ 74



Color code:
undiscovered

DFS (A) discovered

@ fully-explored
Suppose edge lists

at each vertex ‘e, Call Stack:

2

are sorted @ (Edge list)
alphabetically

4

(e3, A(Bd)
&) .



Color code:
undiscovered

DFS (A) discovered

@ fully-explored
Suppose edge lists

at each vertex ‘e, Call Stack:

2

are sorted @ (Edge list)
alphabetically

4

% TA-DA!

@ .

.

.

- .
@ 76



DFS(A)

Edge code:
Tree edge
Back edge

77



Edge code:

Tree edge
@ Back edge

78



Edge code:

u Tree edge
BaCK edge EEEEEE

.
.
\
.
L
]
.
*
]

DFS(A)
o8

oo
.9 & €
& -

79



|
|

.
s
.
-
-
|
.
.
s
.

4

Edge code:
Tree edge
Back edge

80



Edge code:

Tree edge
Back edge

81



Edge code:

ee
gg
dd
ee
9k
0 3
= M
‘tttt

82



Tree edge

Back edge =:s:--

No Cross Edges!
) -

Edge code:

| )
® .
*
*
L 2
*
“ @
@‘ m
@ .-.--.---.-.-.-.-.-@

= &
L
-



PI‘OPEI‘tiES of (Undirected) DFS(V)

Like BFS(v):
DFS(v) visits x if and only if there is a path in G from
v 10 X (through previously unvisited vertices)

Edges into then-undiscovered vertices define a free
— the "depth first spanning tree" of G

Unlike the BFS tree:

the DF spanning tree isn't minimum depth
its levels don't reflect min distance from the root

non-tree edges never join vertices on the same or
adjacent levels

BUT...

84



Non-tree edges

All non-tree edges join a vertex and one
of its descendents/ancestors in the DFS
tree

No cross edges! .

85



Why fuss about trees (again)?

As with BFS, DFS has found a tree in the
graph s.t. non-tree edges are “simple”--
only descendant/ancestor

86



A simple problem on trees

Given: tree T, a value L(v) defined for
every vertexvin T

Goal: find M(v), the min value of L(v)
anywhere in the subtree rooted at v
(including v itself).

How? Depth first search, using:

L(v) if v 1s a leaf
min(L(v), min_, ..., M(w)) otherwise

M(V)={

87



Application: Articulation Points

A node in an undirected graph is an
articulation point iff removing it
disconnects the graph

articulation points represent
vulnerabilities in a network — single points
whose failure would split the network into
2 or more disconnected components

88



Identifying key proteins on the anthrax predicted network

V . Defenz= relaied
[ Enzyme
[0 Ezymeregulador
Y [ tigand binding

f [[] MNcleic acid binding

L f [] Sigmalimnzducer
\ | [ Storage protsin
\ C ) DL . Stiuciual prot=in
L /- B Tranzaipfon regulaer
\\ 7 [7] Tranzporier

Articulation pOiIlt pI’OtGiIlS Ram Samudrala/Jason McDermott




Articulation Points

articulation point
iff its removal
disconnects

\d 90




Articulation Points




Simple Case: Artic. Pts in a tree

Leaves -- never articulation points
Internal nodes -- always articulation points

Root -- articulation point if and only if two
or more children

Non-tree: extra edges remove some
articulation points (which ones?)

93



Articulation Points from DFS

Root node is an articulation point
Iff it has more than one child

Leaf is never an articulation point

non-leaf, non-root

node u is an X
articulation point T\

@. If removal of u does NOT
1 some child y of u s.t. separate x, there must be an
Nno non-tree edge goes exit from x's subtree. How?
above u from y or below | [Viabackedge. y




Articulation Points:
the "LOW" function

Definition: LOW(v) is the lowest dfs# of any
vertex that is either in the dfs subtree rooted at
v (including v itself) or connected to a vertex in
that subtree by a back edge.
Key idea 1: if some child x of v has LOW(x) =
dfs#(v) then v is an articulation point (excl. root)

Key idea 2: LOW(v) =

min ( {dfs#(v)} U {LOW(w) | w a child of v } U
{ dfs#(x) | {v,x} is a back edge fromv })

95



DFS(v) for
Finding Articulation Points

Global initialization: v.dfs# = -1 for all v.

DFS(v)
v.dfs# = dfscounter++
v.low = v.dfs# / initialization
for each edge {v,x}
If (X.dfs# == -1) // X is undiscovered
DFS(x)

v.low = min(v.low, x.low)
If (X.low >= v.dfs#)

print “v is art. pt., separating x” Equiv: “if( {v,x}
else if (x is not v’s parent) « is a back edge)”
v.low = min(v.low, x.dfs#) Why?




Articulation Points

Vertex

Low

SEFrXCTIOTMMOO >

97



Articulation Points

(o))

Vertex|DFS #| Low
A 1 1
B 2 1
C 3 1
D 4 3
E 8 1
F 5 3
G 9 9
H 10 1
] 6 3
J 11 10
K 7 3
L 12 10
M 13 13

©
oo



Articulation Points

Vertex

DFS #

Low

IOTMmMOO T >

AP’s:
BCC'’s:
1)
2)
3)
4)

99



ArtiCUIation POintS Vertex|DFS #

Low

A 1 1
B 2 1
C 3 3
D 4 3
E 5 3
F 6 1
G 7 6
H 8 6
AP’s:C,B, F
BCC'’s:

1) C--D, D--E, E--C

2) B--C

3) A--B, B--F, F--A

4) F--G, G--H, H--F

100



