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Objects & Relationships

The Kevin Bacon Game:

Actors

Two are related if they’ve been in a movie together
Exam Scheduling:

Classes

Two are related if they have students in common
Traveling Salesperson Problem:

Cities

Two are related if can travel directly between them



Graphs

An extremely important formalism for
representing (binary) relationships

Objects: “vertices”, aka “nodes”

Relationships between pairs: “edges”,
aka “arcs”

Formally, a graph G = (V, E) is a pair of
sets, V the vertices and E the edges



Undirected Graph G = (V,E)
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Undirected Graph G = (V,E)
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Undirected Graph G = (V,E)




Graphs don’t live in Flatland

Geometrical drawing is mentally
convenient, but mathematically
irrelevant: 4 drawings, 1 graph.
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Directed Graph G = (V,E)
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Directed Graph G = (V,E)
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Directed Graph G = (V,E)
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Specifying undirected
graphs as input

What are the vertices?

Explicitly list them:
{“A”, “7”, “3”, “4”}
What are the edges?

Either, set of edges A 7 3 4
WASHATAL43L{4AL 7
Or, (symmetric) X
adjacency matrix: 700 0 0 1
311 0 0 1
411 1 1 O
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Specifying directed
graphs as input

What are the vertices
Explicitly list them:
{“A”, “7”, “3”, “4”}

What are the edges

Either, set of directed
edges: {(A,4), (4,7),
(4,3), (4,A), (A,3)}

Or, (honsymmetric)
adjacency matrix:

AN w39 >

—_ O O Ol

—_— O O Ol

—_—O O = W
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# Vertices vs # Edges

Let G be an undirected graph with n vertices

and m edges

How are n and m related?

Since

every edge connects two different vertices (no

loops), and

no two edges connect the same two vertices (no

multi-edges),
It must be true that:

0 =<m =< n(n-1)/2 = O(n?)
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More Cool Graph Lingo

A graph is called sparse if m << n?, otherwise it
IS dense

Boundary is somewhat fuzzy; O(n) edges is certainly
sparse, Q(n?) edges is dense.

Sparse graphs are common in practice
E.g., all planar graphs are sparse

Q: which is a better run time, O(n+m) or O(n2)?

A: O(n+m) = O(n?), but n+m usually way better!
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Representing Graph G = (V,E)
n vertices, m edges

?)

Vertex set V ={v,, ..., v}

Adjacency Matrix A A7 3 4
Ali,j] = 1 iff (v,,v) EE e o o
Space is n? bits j i ‘1) ‘1) (1)

Advantages:
O(1) test for presence or absence of edges.
compact if in packed binary form for large m

Disadvantages: inefficient for sparse graphs

> M << N2




Representing Graph G=(V,E)
n vertices, m edges

4> 77
Adjacency List: AN g g e s g
O(n+m) words Vo 1i1> 37
Advantages: Vo> 2 i4>[5i4>{6 ]

Compact for
sparse graphs

Easily see all edges

Disadvantages
More complex data structure
no O(1) edge test
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Representing Graph G=(V,E)
n vertices, m edges

: , Slo 1514 i1 77
Adjacency List: Vi 2 A4 L 7
ST 053 7
O(n+m) words Vo1 i123 7
Vo[> 2 i 5567
v, [

Back- and cross pointers more work to build,
but allow easier traversal and deletion of edges,
if needed, (don’t bother if not)
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Graph Traversal

Learn the basic structure of a graph

“Walk,” via edges, from a fixed starting
vertex v to all vertices reachable from v

Three states of vertices
undiscovered
discovered
fully-explored
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Breadth-First Search

Completely explore the vertices in order
of their distance from v

Naturally implemented using a queue

24



BFS(v)

Global initialization: mark all vertices "undiscovered"

BFS(v)
mark v "discovered"
gqueue =V

while queue not empty
u = remove_first(queue)
for each edge {u,x}

if (x is undiscovered) Exercise: modify
mark x discovered code to number
append x on queue vertices &
mark u completed compute level
numbers




BFS(v)

Queue:




BFS(v)

Queue:
23




BFS(v)

Queue:
34




BFS(v)




BFS(v)




BFS(v)

Queue:
8910 11




BFS(v)

Queue:
101112 13




BFS(v)




BFS analysis

Each edge is explored once from each
end-point (at most)

Each vertex is discovered by following a
different edge

Total cost O(m) where m=# of edges
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PI‘OPEI‘tiES of (Undirected) BFS(V)

BFS(v) visits x if and only if there is a path in G
from v to Xx.

Edges into then-undiscovered vertices define a
free — the "breadth first spanning tree" of G

Level i in this tree are exactly those vertices u
such that the shortest path (in G, not just the tree)
from the root v is of length i.

Allnon-tree edges join vertices on the same or
adjacent levels

36



BFS Application: Shortest Paths

Tree (solid edges)
gives shortest
paths from
start vertex
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Why fuss about trees?

Trees are simpler than graphs
Ditto for algorithms on trees vs on graphs

So, this is often a good way to approach a
graph problem: find a “nice” tree in the graph,
l.e., one such that non-tree edges have some
simplifying structure

E.g., BFS finds a tree s.t. level-jumps are
minimized

DFS (next) finds a different tree, but it also has
interesting structure...

38



Graph Search Application:
Connected Components

Want to answer questions of the form:

given vertices u and v, is there a
path from u to v?

Q: Why not
|dea: create array A such that create 2-d

arra
A[u] = smallest numbered vertex Pathy[u,v]?

that is connected to u
guestion reduces to whether A[u]=A[v]?
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Graph Search Application:
Connected Components

initial state: all v undiscovered
forv=1tondo
If state(v) != fully-explored then

BFS(v): setting A[u] <V for each u found
(and marking u discovered/fully-explored)
endif
endfor

Total cost: O(n+m)
each edge is touched a constant number of times
works also with DFS
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Depth-First Search

Follow the first path you find as far as you
can go

Back up to last unexplored edge when
you reach a dead end, then go as far you
can

Naturally implemented using recursive
calls or a stack
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Exercise: modify to
compute vertex

DFS(v) - explicit stack [ numbering

Global Initialization: mark all vertices "undiscovered"
DFS(v)

mark v "discovered"
push (v,1) onto empty stack
while stack not empty
(u,i) = pop(stack)
for ( ;i = # of neighbors of u; 4+)
x = it edge on u’s edge Ji
if (x is undiscovered)

mark x “discqyered”
push (u,i+1) // save info to resume with u’s next edge,

u=x /[ after exploring from X,
i =1 / (starting with its first edge)

mark u completed

|dea: stack of unfinished
vertices, plus pointers into
their edge lists to say what
work remains to finish.
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DFS(v) — Recursive version

Global Initialization:
mark all vertices v "undiscovered” via v.dfs# = -1
dfscounter =0

DFS(v)
v.dfs# = dfscounter++ // mark v “discovered”, & number it
for each edge (v,x)
if (x.dfs# =-1) // tree edge (x previously undiscovered)
DFS(x)
else ... // code for back-, fwd-, parent,
// edges, if needed

// mark v “completed,” if needed 4
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Color code:
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Color code:
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Color code:
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Color code:
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Color code:

undiscovered

DFS(A)

Suppose edge lists
at each vertex
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alphabetically
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Color code:
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DFS(A)

Suppose edge lists
at each vertex
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DFS(A)

Suppose edge lists
at each vertex
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DFS(A)

Suppose edge lists
at each vertex

are sorted
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DFS(A)

Suppose edge lists
at each vertex

are sorted
alphabetically
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DFS(A)

Suppose edge lists
at each vertex

are sorted
alphabetically
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DFS(A)

Suppose edge lists
at each vertex

are sorted
alphabetically
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Color code:
undiscovered

DFS (A) discovered

@ fully-explored
Suppose edge lists

at each vertex ‘e, Call Stack:

2

are sorted @ (Edge list)
alphabetically

4

(e3, A(Bd)
&) .



Color code:
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DFS(A)

Edge code:
Tree edge
Back edge

77



Edge code:

Tree edge
@ Back edge
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Edge code:
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Edge code:

Tree edge
Back edge
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Tree edge

Back edge =:s:--

No Cross Edges!
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PI‘OPEI‘tiES of (Undirected) DFS(V)

Like BFS(v):
DFS(v) visits x if and only if there is a path in G from
v 10 X (through previously unvisited vertices)

Edges into then-undiscovered vertices define a free
— the "depth first spanning tree" of G

Unlike the BFS tree:

the DF spanning tree isn't minimum depth
its levels don't reflect min distance from the root

non-tree edges never join vertices on the same or
adjacent levels

BUT...
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Non-tree edges

All non-tree edges join a vertex and one
of its descendents/ancestors in the DFS
tree

No cross edges! .
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Why fuss about trees (again)?

As with BFS, DFS has found a tree in the
graph s.t. non-tree edges are “simple”--
only descendant/ancestor
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A simple problem on trees

Given: tree T, a value L(v) defined for
every vertexvin T

Goal: find M(v), the min value of L(v)
anywhere in the subtree rooted at v
(including v itself).

How? Depth first search, using:

L(v) if v 1s a leaf
min(L(v), min_, ..., M(w)) otherwise

M(V)={
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Application: Articulation Points

A node in an undirected graph is an
articulation point iff removing it
disconnects the graph

articulation points represent
vulnerabilities in a network — single points
whose failure would split the network into
2 or more disconnected components
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Identifying key proteins on the anthrax predicted network

V . Defenz= relaied
[ Enzyme
[0 Ezymeregulador
Y [ tigand binding

f [[] MNcleic acid binding

L f [] Sigmalimnzducer
\ | [ Storage protsin
\ C ) DL . Stiuciual prot=in
L /- B Tranzaipfon regulaer
\\ 7 [7] Tranzporier

Articulation pOiIlt pI’OtGiIlS Ram Samudrala/Jason McDermott




Articulation Points

articulation point
iff its removal
disconnects
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Articulation Points




Simple Case: Artic. Pts in a tree

Leaves -- never articulation points
Internal nodes -- always articulation points

Root -- articulation point if and only if two
or more children

Non-tree: extra edges remove some
articulation points (which ones?)
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Articulation Points from DFS

Root node is an articulation point
Iff it has more than one child

Leaf is never an articulation point

non-leaf, non-root

node u is an X
articulation point T\

@. If removal of u does NOT
1 some child y of u s.t. separate x, there must be an
Nno non-tree edge goes exit from x's subtree. How?
above u from y or below | [Viabackedge. y




Articulation Points:
the "LOW" function

Definition: LOW(v) is the lowest dfs# of any
vertex that is either in the dfs subtree rooted at
v (including v itself) or connected to a vertex in
that subtree by a back edge.
Key idea 1: if some child x of v has LOW(x) =
dfs#(v) then v is an articulation point (excl. root)

Key idea 2: LOW(v) =

min ( {dfs#(v)} U {LOW(w) | w a child of v } U
{ dfs#(x) | {v,x} is a back edge fromv })
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DFS(v) for
Finding Articulation Points

Global initialization: v.dfs# = -1 for all v.

DFS(v)
v.dfs# = dfscounter++
v.low = v.dfs# / initialization
for each edge {v,x}
If (X.dfs# == -1) // X is undiscovered
DFS(x)

v.low = min(v.low, x.low)
If (X.low >= v.dfs#)

print “v is art. pt., separating x” Equiv: “if( {v,x}
else if (x is not v’s parent) « is a back edge)”
v.low = min(v.low, x.dfs#) Why?




Articulation Points

Vertex

Low
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Articulation Points

(o))

Vertex|DFS #| Low
A 1 1
B 2 1
C 3 1
D 4 3
E 8 1
F 5 3
G 9 9
H 10 1
] 6 3
J 11 10
K 7 3
L 12 10
M 13 13

©
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Articulation Points

Vertex

DFS #

Low

IOTMmMOO T >

AP’s:
BCC'’s:
1)
2)
3)
4)
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ArtiCUIation POintS Vertex|DFS #

Low

A 1 1
B 2 1
C 3 3
D 4 3
E 5 3
F 6 1
G 7 6
H 8 6
AP’s:C,B, F
BCC'’s:

1) C--D, D--E, E--C

2) B--C

3) A--B, B--F, F--A

4) F--G, G--H, H--F
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