
1

1

CSE 417:  Algorithms and
Computational Complexity

Winter 2005
Graphs and Graph Algorithms

Larry Ruzzo

2

Kevin Kline was in
“French Kiss” 
with Meg Ryan

Meg Ryan was in 
“Sleepless in Seattle”

with Tom Hanks

Tom Hanks was in
“Apollo 13” 

with Kevin Bacon

3

Objects & Relationships

 The Kevin Bacon Game:
 Actors
 Two are related if they’ve been in a movie together

 Exam Scheduling:
 Classes
 Two are related if they have students in common

 Traveling Salesperson Problem:
 Cities
 Two are related if can travel directly between them

4

Graphs

 An extremely important formalism for
representing (binary) relationships

 Objects: “vertices”, aka “nodes”
 Relationships between pairs: “edges”,

aka “arcs”
 Formally, a graph G = (V, E) is a pair of

sets, V the vertices and E the edges



2

5

Undirected Graph   G = (V,E)
1

2
10

9

8

3

4

5
6

7

11
12

13

6

Undirected Graph   G = (V,E)
1

2
10

9

8

3

4

5
6

7

11
12

13

7

Undirected Graph   G = (V,E)
1

2
10

9

8

3

4

5
6

7

11
12

13

8

Undirected Graph   G = (V,E)
1

2
10

9

8

3

4

5
6

7

11
12

13

“loop”

“multi-
 edge”



3

9

Undirected Graph   G = (V,E)
1

2
10

9

8

3

4

5
6

7

11
12

13

“loop”

“multi-
 edge”

10

Graphs don’t live in Flatland

 Geometrical drawing is mentally
convenient, but mathematically
irrelevant: 4 drawings, 1 graph.

A

7 4

3
A

74

3

A

74

3

A

7 4

3

11

Directed Graph G = (V,E)
1

2
10

9

8

3

4

5
6

7

11
12

13

12

Directed Graph G = (V,E)
1

2
10

9

8

3

4

5
6

7

11
12

13



4

13

Directed Graph G = (V,E)
1

2
10

9

8

3

4

5
6

7

11
12

13

14

Directed Graph G = (V,E)
1

2
10

9

8

3

4

5
6

7

11
12

13

“loop”

“multi-
 edge”

15

Directed Graph G = (V,E)
1

2
10

9

8

3

4

5
6

7

11
12

13

“loop”

“multi-
 edge”

16

A

7 4

3

Specifying undirected
graphs as input

 What are the vertices?
 Explicitly list them:

{“A”, “7”, “3”, “4”}
 What are the edges?
 Either, set of edges

{{A,3}, {7,4}, {4,3}, {4,A}}
 Or, (symmetric)

adjacency matrix:

! 

A 7 3 4

A 0 0 1 1

7 0 0 0 1

3 1 0 0 1

4 1 1 1 0



5

17

A

7 4

3

Specifying directed
graphs as input

 What are the vertices
 Explicitly list them:

{“A”, “7”, “3”, “4”}
 What are the edges
 Either, set of directed

edges:  {(A,4), (4,7),
(4,3), (4,A), (A,3)}

 Or, (nonsymmetric)
adjacency matrix:

! 

A 7 3 4

A 0 0 1 1

7 0 0 0 0

3 0 0 0 0

4 1 1 1 0

18

# Vertices vs # Edges

 Let G be an undirected graph with n vertices
and m edges

 How are n and m related?
 Since
 every edge connects two different vertices (no

loops), and
 no two edges connect the same two vertices (no

multi-edges),
it must be true that:    0 ≤ m ≤ n(n-1)/2 = O(n2)

19

More Cool Graph Lingo

 A graph is called sparse if m << n2, otherwise it
is dense
 Boundary is somewhat fuzzy; O(n) edges is certainly

sparse, Ω(n2) edges is dense.
 Sparse graphs are common in practice
 E.g., all planar graphs are sparse

 Q: which is a better run time, O(n+m) or O(n2)?
A: O(n+m) = O(n2), but n+m usually way better!

20

Representing Graph  G = (V,E)
n vertices,  m edges

 Vertex set V = {v1, …, vn}
 Adjacency Matrix   A
 A[i,j] = 1 iff (vi,vj) ∈ E
 Space is n2 bits

 Advantages:
 O(1) test for presence or absence of edges.
 compact if in packed binary form for large m

 Disadvantages: inefficient for sparse graphs

m << n2

! 

A 7 3 4

A 0 0 1 1

7 0 0 0 1

3 1 0 0 1

4 1 1 1 0

A

743



6

21

Representing Graph  G=(V,E)
n vertices,  m edges

 Adjacency List:
 O(n+m) words

 Advantages:
 Compact for

sparse graphs
 Easily see all edges

 Disadvantages
 More complex data structure
 no O(1) edge test

7

7

 
v3

v2

v1

vn

2 6

2 4

3

5

1

22

Representing Graph  G=(V,E)
n vertices,  m edges

 Adjacency List:
 O(n+m) words

 Back- and cross pointers more work to build,
but allow easier traversal and deletion of edges,
if needed,  (don’t bother if not)

1

7

 
v3

v2

v1

v7

2 6

2 4

3

5

1

23

Graph Traversal

 Learn the basic structure of a graph
 “Walk,” via edges, from a fixed starting

vertex v to all vertices reachable from v

 Three states of vertices
 undiscovered
 discovered
 fully-explored

24

Breadth-First Search

 Completely explore the vertices in order
of their distance from v

 Naturally implemented using a queue



7

25

BFS(v)

Global initialization: mark all vertices "undiscovered"
BFS(v)

mark  v "discovered"
queue = v
while queue not empty

u = remove_first(queue)
for each edge {u,x}

if (x is undiscovered)
mark x discovered
append x on queue

mark u completed

Exercise: modify
code to number
vertices &
compute level
numbers 27

BFS(v)
1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:
1  

28

BFS(v)
1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:
2 3  

29

BFS(v)
1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:
3 4



8

30

BFS(v)
1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:
4 5 6 7

31

BFS(v)
1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:
5 6 7 8 9

32

BFS(v)
1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:
8 9 10 11

33

BFS(v)
1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:
10 11 12 13



9

34

BFS(v)
1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:

35

BFS analysis

 Each edge is explored once from each
end-point (at most)

 Each vertex is discovered by following a
different edge

 Total cost O(m)  where m=# of edges

36

Properties of (Undirected) BFS(v)

 BFS(v) visits x if and only if there is a path in G
from v to x.

 Edges into then-undiscovered vertices define a
tree – the "breadth first spanning tree" of G

 Level i in this tree are exactly those vertices u
such that the shortest path (in G, not just the tree)
from the root v is of length i.

 All non-tree edges join vertices on the same or
adjacent levels

37

BFS Application: Shortest Paths
1

2 3

10

5

4

9

12
8

13

6
7

11

0

1

2

3

4
can label by distances from start

all edges connect same/adjacent levels

Tree (solid edges) 
gives shortest 
paths from 
start vertex



10

38

Why fuss about trees?

 Trees are simpler than graphs
 Ditto for algorithms on trees vs on graphs
 So, this is often a good way to approach a

graph problem: find a “nice” tree in the graph,
i.e., one such that non-tree edges have some
simplifying structure

 E.g., BFS finds a tree s.t. level-jumps are
minimized

 DFS (next) finds a different tree, but it also has
interesting structure…

39

Graph Search Application:
Connected Components

 Want to answer questions of the form:
 given vertices u and v, is there a

path from u to v?

 Idea: create array A such that
A[u] = smallest numbered vertex 

 that is connected to u
 question reduces to whether A[u]=A[v]?

Q: Why not
create 2-d
array
Path[u,v]?

40

Graph Search Application:
Connected Components

 initial state: all v undiscovered
for v=1 to n do                                          

if state(v) != fully-explored then
BFS(v): setting A[u] ←v for each u found
(and marking u discovered/fully-explored)

endif
endfor

 Total cost: O(n+m)
 each edge is touched a constant number of times
 works also with DFS

41

Depth-First Search

 Follow the first path you find as far as you
can go

 Back up to last unexplored edge when
you reach a dead end, then go as far you
can

 Naturally implemented using recursive
calls or a stack



11

42

DFS(v) - explicit stack

Global Initialization: mark all vertices "undiscovered"
DFS(v)

mark  v "discovered"
push (v,1) onto empty stack
while stack not empty

(u,i) = pop(stack)
for ( ; i ≤ # of neighbors of u; i++)

x = ith edge on u’s edge list
if (x is undiscovered)

mark x “discovered”
push (u,i+1) // save info to resume with u’s next edge,
u = x // after exploring from x,
i = 1 // (starting with its first edge)

mark u completed

Exercise: modify to
compute vertex
numbering

Idea: stack of unfinished
vertices, plus pointers into
their edge lists to say what
work remains to finish.

43

DFS(v) – Recursive version

Global Initialization:
mark all vertices v "undiscovered” via v.dfs# = -1
dfscounter = 0

DFS(v)
v.dfs# = dfscounter++ // mark  v “discovered”, & number it
for each edge (v,x)

if (x.dfs# = -1) // tree edge (x previously  undiscovered)
DFS(x)

else … // code for back-, fwd-, parent,
// edges, if needed

// mark v “completed,” if needed

45

DFS(A)
A,1

B J

I

H

C

G

FD

E

K L

M

Suppose edge lists
at each vertex
are sorted
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack
(Edge list):

A (B,J)

46

DFS(A)
A,1

B,2 J

I

H

C

G

FD

E

K L

M

Suppose edge lists
at each vertex
are sorted
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)



12

47

DFS(A)
A,1

B,2 J

I

H

C,3

G

FD

E

K L

M

Suppose edge lists
at each vertex
are sorted
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)

48

DFS(A)
A,1

B,2 J

I

H

C,3

G

FD,4

E

K L

M

Suppose edge lists
at each vertex
are sorted
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
D (C,E,F)

49

DFS(A)
A,1

B,2 J

I

H

C,3

G

FD,4

E,5

K L

M

Suppose edge lists
at each vertex
are sorted
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
D (C,E,F)
E (D,F)

50

DFS(A)
A,1

B,2 J

I

H

C,3

G

F,6D,4

E,5

K L

M

Suppose edge lists
at each vertex
are sorted
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
D (C,E,F)
E (D,F)
F (D,E,G)



13

51

DFS(A)
A,1

B,2 J

I

H

C,3

G,7

F,6D,4

E,5

K L

M

Suppose edge lists
at each vertex
are sorted
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
D (C,E,F)
E (D,F)
F (D,E,G)
G(C,F)

52

DFS(A)
A,1

B,2 J

I

H

C,3

G,7

F,6D,4

E,5

K L

M

Suppose edge lists
at each vertex
are sorted
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
D (C,E,F)
E (D,F)
F (D,E,G)
G(C,F)

53

DFS(A)
A,1

B,2 J

I

H

C,3

G,7

F,6D,4

E,5

K L

M

Suppose edge lists
at each vertex
are sorted
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
D (C,E,F)
E (D,F)
F (D,E,G)

54

DFS(A)
A,1

B,2 J

I

H

C,3

G,7

F,6D,4

E,5

K L

M

Suppose edge lists
at each vertex
are sorted
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
D (C,E,F)
E (D,F)



14

55

DFS(A)
A,1

B,2 J

I

H

C,3

G,7

F,6D,4

E,5

K L

M

Suppose edge lists
at each vertex
are sorted
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
D (C,E,F)

56

DFS(A)
A,1

B,2 J

I

H

C,3

G,7

F,6D,4

E,5

K L

M

Suppose edge lists
at each vertex
are sorted
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)

57

DFS(A)
A,1

B,2 J

I

H

C,3

G,7

F,6D,4

E,5

K L

M

Suppose edge lists
at each vertex
are sorted
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)

58

DFS(A)
A,1

B,2 J

I

H,8

C,3

G,7

F,6D,4

E,5

K L

M

Suppose edge lists
at each vertex
are sorted
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)



15

59

DFS(A)
A,1

B,2 J

I,9

H,8

C,3

G,7

F,6D,4

E,5

K L

M

Suppose edge lists
at each vertex
are sorted
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
I (H)

60

DFS(A)
A,1

B,2 J

I,9

H,8

C,3

G,7

F,6D,4

E,5

K L

M

Suppose edge lists
at each vertex
are sorted
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
I (H)

61

DFS(A)
A,1

B,2 J

I,9

H,8

C,3

G,7

F,6D,4

E,5

K L

M

Suppose edge lists
at each vertex
are sorted
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)

62

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K L

M

Suppose edge lists
at each vertex
are sorted
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
J (A,B,H,K,L)



16

63

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L

M

Suppose edge lists
at each vertex
are sorted
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
J (A,B,H,K,L)
K (J,L)

64

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M

Suppose edge lists
at each vertex
are sorted
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
J (A,B,H,K,L)
K (J,L)
L (J,K,M)

65

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Suppose edge lists
at each vertex
are sorted
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
J (A,B,H,K,L)
K (J,L)
L (J,K,M)
M(L)

66

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Suppose edge lists
at each vertex
are sorted
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
J (A,B,H,K,L)
K (J,L)
L (J,K,M)



17

67

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Suppose edge lists
at each vertex
are sorted
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
J (A,B,H,K,L)
K (J,L)

68

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Suppose edge lists
at each vertex
are sorted
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
J (A,B,H,K,L)

69

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Suppose edge lists
at each vertex
are sorted
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
J (A,B,H,K,L)

70

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Suppose edge lists
at each vertex
are sorted
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)



18

71

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Suppose edge lists
at each vertex
are sorted
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)

72

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Suppose edge lists
at each vertex
are sorted
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)

73

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Suppose edge lists
at each vertex
are sorted
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)

74

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Suppose edge lists
at each vertex
are sorted
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)



19

75

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Suppose edge lists
at each vertex
are sorted
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)

76

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Suppose edge lists
at each vertex
are sorted
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

TA-DA!!

77

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Edge code:
Tree edge
Back edge

78

DFS(A) A,1

B,2
J,10

I,9

H,8

C,3

G,7

F,6

D,4

E,5

K,11 L,12

M,13

Edge code:
Tree edge
Back edge



20

79

DFS(A) A,1

B,2

J,10

I,9

H,8

C,3

G,7

F,6

D,4

E,5

K,11
L,12

M,13

Edge code:
Tree edge
Back edge

80

DFS(A)
A,1

B,2

J,10

I,9

H,8

C,3

G,7

F,6

D,4

E,5

K,11
L,12

M,13

Edge code:
Tree edge
Back edge

81

DFS(A)
A,1

B,2

J,10

I,9

H,8

C,3

G,7

F,6

D,4

E,5

K,11

L,12

M,13

Edge code:
Tree edge
Back edge

82

DFS(A)
A,1

B,2

J,10

I,9

H,8

C,3

G,7F,6

D,4

E,5 K,11

L,12

M,13

Edge code:
Tree edge
Back edge



21

83

DFS(A)
A,1

B,2

J,10

I,9

H,8

C,3

G,7

F,6

D,4

E,5

K,11
L,12

M,13

Edge code:
Tree edge
Back edge
No Cross Edges!

84

Properties of (Undirected) DFS(v)

 Like BFS(v):
 DFS(v) visits x if and only if there is a path in G from

v to x (through previously unvisited vertices)
 Edges into then-undiscovered vertices define a tree

– the "depth first spanning tree" of G
 Unlike the BFS tree:
 the DF spanning tree isn't minimum depth
 its levels don't reflect min distance from the root
 non-tree edges never join vertices on the same or

adjacent levels
 BUT…

85

Non-tree edges

 All non-tree edges join a vertex and one
of its descendents/ancestors in the DFS
tree

 No cross edges!

86

Why fuss about trees (again)?

 As with BFS, DFS has found a tree in the
graph s.t. non-tree edges are “simple”--
only descendant/ancestor



22

87

! 

M(v) =
L(v) if v is a leaf

min(L(v), min
w a child of v M(w)) otherwise

" 
# 
$ 

% 
& 
' 

A simple problem on trees

Given: tree T, a value L(v) defined for
every vertex v in T
Goal: find M(v), the min value of L(v)
anywhere in the subtree rooted at v
(including v itself).
How?  Depth first search, using:

88

Application: Articulation Points

 A node in an undirected graph is an
articulation point iff removing it
disconnects the graph

 articulation points represent
vulnerabilities in a network – single points
whose failure would split the network into
2 or more disconnected components

89Ram Samudrala/Jason McDermottArticulation point proteins

Identifying key proteins on the anthrax predicted network

90

Articulation Points
1

2 10

9

8

3

7

6
4

5

11
12

13

articulation point
iff its removal

disconnects
the graph



23

91

Articulation Points
1

2 10

9

8

3

7

6
4

5

11
12

13

93

Simple Case: Artic. Pts in a tree

 Leaves -- never articulation points
 Internal nodes -- always articulation points
 Root -- articulation point if and only if two

or more children

 Non-tree: extra edges remove some
articulation points (which ones?)

94

Articulation Points from DFS

 Root node is an articulation point
iff it has more than one child

 Leaf is never an articulation point


∃ some child y of u s.t.
no non-tree edge goes
above u from y or below

non-leaf, non-root
node u is an
articulation point⇔

u
x

If removal of u does NOT
separate x, there must be an
exit from x's subtree.  How?
Via back edge.

y

95

Articulation Points:
the "LOW" function

 Definition:  LOW(v) is the lowest dfs# of any
vertex that is either in the dfs subtree rooted at
v (including v itself) or connected to a vertex in
that subtree by a back edge.

 Key idea 1: if some child x of v has LOW(x) ≥
dfs#(v) then v is an articulation point (excl. root)

 Key idea 2: LOW(v) =
    min ( {dfs#(v)} ∪ {LOW(w) | w a child of v } ∪
 { dfs#(x) | {v,x} is a back edge from v } )

trivial

critic
al



24

96

DFS(v) for
Finding Articulation Points

Global initialization: v.dfs# = -1 for all v.
DFS(v)
v.dfs# = dfscounter++
v.low = v.dfs# // initialization
for each edge {v,x}

if (x.dfs# == -1) // x is undiscovered
DFS(x)
v.low = min(v.low, x.low)
if (x.low >= v.dfs#)

print “v is art. pt., separating x”
else if (x is not v’s parent)

v.low = min(v.low, x.dfs#)

Equiv: “if( {v,x}
is a back edge)”
Why?

Except for root.  W
hy?

97

Articulation Points
A

B

HG

E

C

K

I

D

F

J
L

M

Vertex DFS # Low
A
B
C
D
E
F
G
H
I
J
K
L
M

98

Articulation Points
A

B

HG

E

C

K

I

D

F

J
L

M

1

13

12

7

11
6

10
95

84

3

2 Vertex DFS # Low
A 1 1
B 2 1
C 3 1
D 4 3
E 8 1
F 5 3
G 9 9
H 10 1
I 6 3
J 11 10
K 7 3
L 12 10
M 13 13

99

Articulation Points

A

B

H

FC

D E

Vertex DFS # Low
A
B
C
D
E
F
G
H   

AP’s:
BCC’s: 
  1)
  2)
  3)
  4)                           G



25

100

Articulation Points

A

B

H

FC

D E

1

6

85 74

3

2

Vertex DFS # Low
A 1 1
B 2 1
C 3 3
D 4 3
E 5 3
F 6 1
G 7 6
H 8 6

AP’s: C, B, F
BCC’s: 
  1) C--D, D--E, E--C
  2) B--C
  3) A--B, B--F, F--A
  4) F--G, G--H, H--FG


