

Objects \& Relationships

- The Kevin Bacon Game:
\| Actors
| Two are related if they've been in a movie together
- Exam Scheduling:
\| Classes
|l Two are related if they have students in common
- Traveling Salesperson Problem:
\| Cities
I Two are related if can travel directly between them

Graphs

I. An extremely important formalism for representing (binary) relationships
\| Objects: "vertices", aka "nodes"
| Relationships between pairs: "edges", aka "arcs"

- Formally, a graph $G=(V, E)$ is a pair of sets, V the vertices and E the edges

Graphs don't live in Flatland

Geometrical drawing is mentally
convenient, but mathematically
irrelevant: 4 drawings, 1 graph.

Specifying undirected
graphs as input
What are the vertices?
|| Explicitly list them: \{"A", " 7 ", " " 3 ", " ""\}
What are the edges?
1 Either, set of edges
$\{\{\mathrm{A}, 3\},\{7,4\},\{4,3\},\{4, A\}\}$
\| Or, (symmetric) adjacency matrix:

	A	7	3	4
A	0	0	1	1
7	0	0	0	1
3	1	0	0	1
4	1	1	1	0

Specifying directed graphs as input

What are the vertices
Explicitly list them: \{"A", "7", " 3 ", " 4 "\}

- What are the edges

Either, set of directed edges: $\{(\mathrm{A}, 4),(4,7)$, $(4,3),(4, A),(A, 3)\}$
Or, (nonsymmetric) adjacency matrix

	A	7	3	4
A	0	0	1	1
7	0	0	0	0
3	0	0	0	0
4	1	1	1	0
				17

More Cool Graph Lingo

A graph is called sparse if $m \ll n^{2}$, otherwise it is dense

Boundary is somewhat fuzzy; $\mathrm{O}(\mathrm{n})$ edges is certainly sparse, $\Omega\left(n^{2}\right)$ edges is dense.
\| Sparse graphs are common in practice
E.g., all planar graphs are sparse
\| Q : which is a better run time, $\mathrm{O}(\mathrm{n}+\mathrm{m})$ or $\mathrm{O}\left(\mathrm{n}^{2}\right)$?
$A: O(n+m)=O\left(n^{2}\right)$, but $n+m$ usually way better!

\# Vertices vs \# Edges

- Let G be an undirected graph with n vertices and m edges
\| How are n and m related?
- Since

I every edge connects two different vertices (no loops), and
\| no two edges connect the same two vertices (no multi-edges),
it must be true that: $0 \leq m \leq n(n-1) / 2=O\left(n^{2}\right)$

Representing Graph $G=(V, E)$ n vertices, m edges

- Vertex set $V=\left\{\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$
- Adjacency Matrix A
$\| A[i, j]=1$ iff $\left(v_{i}, v_{i}\right) \in E$
I Space is n^{2} bits

> | | A | 7 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| A | 0 | 0 | 1 | 1 |
| 7 | 0 | 0 | 0 | 1 |
| 3 | 1 | 0 | 0 | 1 |
| 4 | 1 | 1 | 1 | 0 |

- Advantages:
\| O(1) test for presence or absence of edges.
\| compact if in packed binary form for large m
- Disadvantages: inefficient for sparse graphs

Representing Graph $G=(\mathrm{V}, \mathrm{E})$ n vertices, m edges

- Adjacency List:
| $\mathrm{O}(\mathrm{n}+\mathrm{m})$ words
- Advantages:
\| Compact for sparse graphs
Easily see all edges

- Disadvantages
|| More complex data structure
\| no O(1) edge test

Graph Traversal

- Learn the basic structure of a graph
\|. "Walk," via edges, from a fixed starting vertex v to all vertices reachable from v
- Three states of vertices
undiscovered
discovered
| fully-explored

Representing Graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ n vertices, m edges

Adjacency List:
| O(n+m) words

- Back- and cross pointers more work to build, but allow easier traversal and deletion of edges, if needed, (don't bother if not)

22

Breadth-First Search

- Completely explore the vertices in order of their distance from v

Naturally implemented using a queue

BFS(v)	
Global initialization: mark all vertices "undiscovered"	
```BFS(v) mark v "discovered" queue = v while queue not empty```	
$u=$ remove_first(queue)   for each edge $\{u, x\}$	
if ( $x$ is undiscovered) mark x discovered append $x$ on queue mark u completed	Exercise: modify code to number vertices \& compute level numbers





## Properties of (Undirected) BFS(v)

- $\operatorname{BFS}(v)$ visits $x$ if and only if there is a path in $G$ from $v$ to $x$
- Edges into then-undiscovered vertices define a tree - the "breadth first spanning tree" of G
- Level i in this tree are exactly those vertices u such that the shortest path (in G , not just the tree) from the root $v$ is of length $i$.
I| All non-tree edges join vertices on the same or adjacent levels


## BFS analysis

- Each edge is explored once from each end-point (at most)
- Each vertex is discovered by following a different edge
- Total cost $\mathrm{O}(\mathrm{m})$ where $\mathrm{m}=$ \# of edges


## BFS Application: Shortest Paths



## Why fuss about trees?

- Trees are simpler than graphs
- Ditto for algorithms on trees vs on graphs
- So, this is often a good way to approach a graph problem: find a "nice" tree in the graph, i.e., one such that non-tree edges have some simplifying structure
E.g., BFS finds a tree s.t. level-jumps are minimized
- DFS (next) finds a different tree, but it also has interesting structure...


## Graph Search Application: Connected Components

- Want to answer questions of the form:

II given vertices $u$ and $v$, is there a path from $u$ to $v$ ?

Idea: create array A such that
$\mathrm{A}[\mathrm{u}]=$ smallest numbered vertex
Q: Why not
create 2-d
array
Path $[u, v] ?$ that is connected to $u$
\| question reduces to whether $A[u]=A[v]$ ?

39

## Graph Search Application:

Connected Components

- initial state: all v undiscovered
for $v=1$ to $n$ do
if state(v) != fully-explored then
BFS (v): setting A $[u] \leftarrow v$ for each $u$ found
(and marking u discovered/fully-explored) endif
endfor
- Total cost: $\mathrm{O}(\mathrm{n}+\mathrm{m})$
each edge is touched a constant number of times
works also with DFS


## Depth-First Search

- Follow the first path you find as far as you can go
- Back up to last unexplored edge when you reach a dead end, then go as far you can
- Naturally implemented using recursive calls or a stack



## DFS(v) - Recursive version

Global Initialization:
mark all vertices v "undiscovered" via v.dfs\# = -1 dfscounter $=0$

DFS(v)
v.dfs\# = dfscounter++ // mark v "discovered", \& number it for each edge ( $\mathrm{v}, \mathrm{x}$ )
if ( $\mathrm{x} . \mathrm{dfs} \#=-1$ ) $\quad / /$ tree edge ( x previously undiscovered) DFS(x)
else ... // code for back-, fwd-, parent,
// edges, if needed
// mark v "completed," if needed
43













## Properties of (Undirected) DFS(v)

- Like BFS(v):
|| DFS(v) visits $x$ if and only if there is a path in $G$ from v to x (through previously unvisited vertices)
Edges into then-undiscovered vertices define a tree - the "depth first spanning tree" of G
|| Unlike the BFS tree:
I the DF spanning tree isn't minimum depth
$\|$ its levels don't reflect min distance from the root
\| non-tree edges never join vertices on the same or adjacent levels
- BUT...



## Why fuss about trees (again)?

- As with BFS, DFS has found a tree in the graph s.t. non-tree edges are "simple"-only descendant/ancestor


## A simple problem on trees

Given: tree T, a value $\mathrm{L}(\mathrm{v})$ defined for every vertex v in T
Goal: find $M(v)$, the min value of $L(v)$ anywhere in the subtree rooted at $v$ (including $v$ itself).
How? Depth first search, using:
$M(v)=\left\{\begin{array}{ll}L(v) & \text { if } v \text { is a leaf } \\ \min \left(L(v), \min _{w \text { a child of } v} M(w)\right) & \text { otherwise }\end{array}\right\}$

87

## Application: Articulation Points

- A node in an undirected graph is an articulation point iff removing it disconnects the graph
- articulation points represent vulnerabilities in a network - single points whose failure would split the network into 2 or more disconnected components




## Simple Case: Artic. Pts in a tree

- Leaves -- never articulation points

II Internal nodes -- always articulation points

- Root -- articulation point if and only if two or more children

I Non-tree: extra edges remove some articulation points (which ones?)


## Articulation Points: the "LOW" function

- Definition: LOW(v) is the lowest dfs\# of any vertex that is either in the dfs subtree rooted at $v$ (including $v$ itself) or connected to a vertex in that subtree by a back edge.
|| Key idea 1: if some child $x$ of $v$ has $\operatorname{LOW}(x) \geq$ dfs\#(v) then $v$ is an articulation point (excl. root)
- Key idea 2: LOW(v) = $\min (\{d f s \#(v)\} \cup\{L O W(w) I w$ a child of $v\} \cup$ $\{d f s \#(x) \mid\{v, x\}$ is a back edge from $v\}$ )


## DFS(v) for <br> Finding Articulation Points

Global initialization: v.dfs\# = -1 for all v. DFS(v)
v.dfs\# = dfscounter++
v.low = v.dfs\#
// initialization
for each edge $\{v, x\}$
if $(x . d f s \#==-1) \quad / / x$ is undiscovered DFS( x )
v.low = min(v.low, x.low)
if ( $x$.low >= v.dfs\#)
print " $v$ is art. pt., separating $x$ " Equiv: "if( $\{v, x\}$
else if ( $x$ is not $v$ 's parent) $\longleftarrow$ is a back edge)"
v.low $=\min (v . l o w, ~ x . d f s \#)$ Why?



