CSE 417: Algorithms and Computational Complexity

Winter 2005
Graphs and Graph Algorithms
Larry Ruzzo

1

Objects & Relationships

- The Kevin Bacon Game:
 - Actors
 - I Two are related if they've been in a movie together
- Exam Scheduling:
 - Classes
 - I Two are related if they have students in common
- Traveling Salesperson Problem:
 - Cities
 - I Two are related if can travel directly between them

Graphs

- An extremely important formalism for representing (binary) relationships
- Objects: "vertices", aka "nodes"
- Relationships between pairs: "edges", aka "arcs"
- Formally, a graph G = (V, E) is a pair of sets, V the vertices and E the edges

Specifying undirected graphs as input

- What are the vertices?
 - Explicitly list them: {"A", "7", "3", "4"}
- What are the edges?
 - Either, set of edges {{A,3}, {7,4}, {4,3}, {4,A}}
 - Or, (symmetric) adjacency matrix:

	A	7	3	4
\overline{A} 7	0	0	1	1
7	0	0	0	1
3 4	1	0	0	1
4	1	1	1	0
			40	

Specifying directed graphs as input

- What are the vertices
 - Explicitly list them: {"A", "7", "3", "4"}
- What are the edges
 - Either, set of directed edges: {(A,4), (4,7), (4,3), (4,A), (A,3)}
 - Or, (nonsymmetric) adjacency matrix:

	A	7	3	4
\overline{A}	0	0	1	1
7	0	0	0	0
3	0	0	0	0
4	1	1	1	0

Vertices vs # Edges

- Let G be an undirected graph with n vertices and m edges
- How are n and m related?
- Since
 - every edge connects two different vertices (no loops), and
 - I no two edges connect the *same* two vertices (no multi-edges),

it must be true that:

 $0 \le m \le n(n-1)/2 = O(n^2)$

18

More Cool Graph Lingo

- A graph is called *sparse* if m << n², otherwise it is *dense*
 - I Boundary is somewhat fuzzy; O(n) edges is certainly sparse, $\Omega(n^2)$ edges is dense.
- Sparse graphs are common in practice
 - E.g., all planar graphs are sparse
- Q: which is a better run time, O(n+m) or $O(n^2)$?

A: $O(n+m) = O(n^2)$, but n+m usually way better!

9

Representing Graph G = (V,E)n vertices, m edges

- **■** Vertex set $V = \{v_1, ..., v_n\}$
- Adjacency Matrix A
 - $\textbf{I} \ \ A[i,j] = 1 \ \text{iff} \ (v_i,v_j) \in E$
 - Space is n² bits

- Advantages:
 - O(1) test for presence or absence of edges.
 - compact if in packed binary form for large m
- Disadvantages: inefficient for sparse graphs

→ m << n²

Representing Graph G=(V,E)

- n vertices, m edges
- Adjacency List:
 - O(n+m) words
- Advantages:
 - Compact for sparse graphs
 - Easily see all edges
- Disadvantages
 - More complex data structure
 - I no O(1) edge test

2

23

→ 7 🛮

Representing Graph G=(V,E)

- n vertices, m edges
- Adjacency List:
 - O(n+m) words

Back- and cross pointers more work to build, but allow easier traversal and deletion of edges, if needed, (don't bother if not)

22

Graph Traversal

- Learn the basic structure of a graph
- "Walk," via edges, from a fixed starting vertex v to all vertices reachable from v
- Three states of vertices
 - undiscovered
 - discovered
 - I fully-explored

Breadth-First Search

- Completely explore the vertices in order of their distance from v
- Naturally implemented using a queue

BFS(v) Global initialization: mark all vertices "undiscovered" BFS(v) mark v "discovered" queue = v while queue not empty u = remove_first(queue) for each edge {u,x} if (x is undiscovered) Exercise: modify mark x discovered code to number vertices & append x on queue compute level mark u completed numbers

BFS analysis

- Each edge is explored once from each end-point (at most)
- Each vertex is discovered by following a different edge
- Total cost O(m) where m=# of edges

35

Properties of (Undirected) BFS(v)

- BFS(v) visits x if and only if there is a path in G from v to x.
- Edges into then-undiscovered vertices define a *tree* the "breadth first spanning tree" of G
- Level i in this tree are exactly those vertices u such that the shortest path (in G, not just the tree) from the root v is of length i.
- All non-tree edges join vertices on the same or adjacent levels

6

BFS Application: Shortest Paths Tree (solid edges) gives shortest paths from start vertex an label by distances from start all edges connect same/adjacent levels

Why fuss about trees?

- Trees are simpler than graphs
- Ditto for algorithms on trees vs on graphs
- So, this is often a good way to approach a graph problem: find a "nice" tree in the graph, i.e., one such that non-tree edges have some simplifying structure
- E.g., BFS finds a tree s.t. level-jumps are minimized
- DFS (next) finds a different tree, but it also has interesting structure...

38

Graph Search Application: Connected Components

- Want to answer questions of the form:
 - given vertices u and v, is there a path from u to v?
- Idea: create array A such that A[u] = smallest numbered vertexthat is connected to u
- question reduces to whether A[u]=A[v]?

3

Q: Why not

create 2-d

Path[u,v]?

array

Graph Search Application: Connected Components

initial state: all v undiscovered for v=1 to n do

if state(v) != fully-explored then

BFS(v): setting A[u] ←v for each u found
(and marking u discovered/fully-explored)
endif
endfor

- Total cost: O(n+m)
 - each edge is touched a constant number of times
 - works also with DFS

40

Depth-First Search

- Follow the first path you find as far as you can go
- Back up to last unexplored edge when you reach a dead end, then go as far you can
- Naturally implemented using recursive calls or a stack

Exercise: modify to compute vertex DFS(v) - explicit stack numbering Global Initialization: mark all vertices "undiscovered" DFS(v) Idea: stack of unfinished mark v "discovered" vertices, plus pointers into push (v,1) onto empty stack their edge lists to say what while stack not empty work remains to finish. (u,i) = pop(stack)for (; $i \le \#$ of neighbors of u; i + +) x = ith edge on u's edge Jist if (x is undiscovered) mark x "discoyered" push (u,i+1) // save info to resume with u's next edge, // after exploring from x, u = xi = 1 // (starting with its first edge) 42 mark u completed

Properties of (Undirected) DFS(v)

- Like BFS(v):
 - DFS(v) visits x if and only if there is a path in G from v to x (through previously unvisited vertices)
 - Edges into then-undiscovered vertices define a tree
 the "depth first spanning tree" of G
- Unlike the BFS tree:
 - I the DF spanning tree isn't minimum depth
 - I its levels don't reflect min distance from the root
 - I non-tree edges never join vertices on the same or adjacent levels
- BUT...

84

Non-tree edges

- All non-tree edges join a vertex and one of its descendents/ancestors in the DFS tree
- No cross edges!

35

Why fuss about trees (again)?

As with BFS, DFS has found a tree in the graph s.t. non-tree edges are "simple"-only descendant/ancestor

A simple problem on trees

Given: tree T, a value L(v) defined for

every vertex v in T

Goal: find M(v), the min value of L(v) anywhere in the subtree rooted at v (including v itself).

How? Depth first search, using:

$$M(v) = \begin{cases} L(v) & \text{if } v \text{ is a leaf} \\ \min(L(v), \min_{w \text{ a child of } v} M(w)) & \text{otherwise} \end{cases}$$

87

Application: Articulation Points

- A node in an undirected graph is an articulation point iff removing it disconnects the graph
- articulation points represent vulnerabilities in a network – single points whose failure would split the network into 2 or more disconnected components

Simple Case: Artic. Pts in a tree

- Leaves -- never articulation points
- Internal nodes -- always articulation points
- Root -- articulation point if and only if two or more children
- Non-tree: extra edges remove some articulation points (which ones?)

93

Articulation Points from DFS

- Root node is an articulation point iff it has more than one child
- Leaf is never an articulation point
- non-leaf, non-root node u is an articulation point

3 some child y of u s.t. no non-tree edge goes above u from y or below

If removal of u does NOT separate x, there must be an exit from x's subtree. How? Via back edge.

Articulation Points: the "LOW" function

- Definition: LOW(v) is the lowest dfs# of any vertex that is either in the dfs subtree rooted at v (including v itself) or connected to a vertex in that subtree by a back edge.
- Key idea 1: if some child x of v has LOW(x) ≥ dfs#(v) then v is an articulation point (excl. root)
- Key idea 2: LOW(v) = min ({dfs#(v)} ∪ {LOW(w) | w a child of v } ∪ { dfs#(x) | {v,x} is a back edge from v })

