CSE 417: Algorithms and
Computational Complexity

Winter 2005
Instructor: W. L. Ruzzo
Lectures 13-17

Divide and Conquer Algorithms

The Divide and Conquer
Paradigm

Outline:
General Idea
Review of Merge Sort

Why does it work?
Importance of balance
Importance of super-linear growth
Two interesting applications
Polynomial Multiplication
Matrix Multiplication

Finding & Solving Recurrences

Algorithm Design Techniques

Divide & Conquer
Reduce problem to one or more sub-problems of the

same type
Typically, each sub-problem is at most a constant
fraction of the size of the original problem

e.g. Mergesort, Binary Search, Strassen’s Algorithm,
Quicksort (kind of)

Mergesort (review)

Mergesort: (recursively) sort 2 half-lists,
then merge results.

T(n)=2T(n/2)+cn, n=2
T(1)=0

o O(n)
Solution: ®(nlogn) 3 work

- per

ilg) level

»

Merge Sort

MS(A: array[1..n]) returns array[1..n]{
If(n=1) return A[1];
New U:array[1:n/2] = MS(A[1..n/2));
New L:array[1:n/2] = MS(A[n/2+1..n]);

Return(Merge(U,L)); \f\f \/

} split sort merge

Merge(U,L: array[1..n]) {
New C: array[1..2n];
a=1; b=1;
Fori=11o2n
C[i] = “smaller of U[a], L[b] and correspondingly a++ or b++”;
Return C;

}

)
%
3
g

Going From Code to Recurrence

Carefully define what you’re counting, and

write it down!

“Let C(n) be the number of comparisons between
sort keys used by MergeSort when sorting a list of
lengthn = 17

In code, clearly separate base case from
recursive case, highlight recursive calls,

and
Write Recurrence(s)

Merge Sort

Base Case
MS(A: arraL .n]) returns array[1..n] {

If(n=1) return A

[1]; .
New L:array[1:n/2] mv— Recursive
New R:array[1:n/2] W calls
Return(Merge(L,R))

}

Merge(A,B: array[1..n]) { Recursive
New C: array[1..2n]; k case
a=1; b=1;
Fori=1to2n/!
C[i] = smaller of \[a], B[b] and a++ or b++";
Return C;

}

The Recurrence

Base case
r /

0 1f n=1

C(n) =+ |
2C(n/2)+(n-1) 1tn>1
/

Recursive calls

Total time: proportional to C(n)
(loops, copying data, parameter passing, etc.)

Why Balanced Subdivision?

Alternative "divide & conquer" algorithm:
Sort n-1
Sort last 1
Merge them

T(n)=T(n-1)+T(1)+3n for n=2

T(1)=0
Solution: 3n + 3(n-1) + 3(n-2) ... = B(n?)

Another D&C Approach

Suppose we've already invented
DumbSort, taking time n?

Try Just One Level of divide & conquer:

DumbSort(first n/2 elements)
DumbSort(last n/2 elements)
Merge results

Time: (n/2)? + (n/2)2 + n=n?%/2 + n
Almost twice as fast!

10

Another D&C Approach, cont.

Moral 1:

Two problems of half size are better than one
full-size problem, even given the O(n) overhead
of recombining, since the base algorithm has
super-linear complexity.

Moral 2:

If a little's good, then more's better—two levels
of D&C would be almost 4 times faster, 3 levels
almost 8, etc., even though overhead is
growing. Best is usually full recursion down to
some small constant size (balancing "work" vs
"overhead").

11

Another D&C Approach, cont.

Moral 3: unbalanced division less good:

(.1n)2 + (.9n)2 + n = .82n° + n

The 18% savings compounds significantly if you carry
recursion to more levels, actually giving O(nlogn), but with a
bigger constant. So worth doing if you can’t get 50-50 spilit,
but balanced is better if you can.

This is intuitively why Quicksort with random splitter is good
— badly unbalanced splits are rare, and not instantly fatal.

(1)2+(n-1)2+n=n?-2n+2 +n
Little improvement here.

12

Another D&C Example:
Multiplying Faster

On the first HW you analyzed our usual
algorithm for multiplying numbers
©(n?) time

We can do better!

We’'ll describe the basic ideas by multiplying
polynomials rather than integers

Advantage is we don’t get confused by
worrying about carries at first

13

Notes on Polynomials

These are just formal sequences of
coefficients so when we show something

multiplied by x¥ it just means shifted k places
to the left — basically no work

Usual | 3x2 + 2X + 2
Polynomial X2 - 33X + 1

-Ox° - 6X?2 - 6X
3x4 + 2x5+ 2x?
3x4-7x3 - X2-4Xx+ 2

Polynomial EEEE

Multiplication T

Given: EEEEEEN

Degree m-1 polynomials P and Q
P=a,+a, x+a,x?+...+a,,Xx"% +a_ xm
Q=Dby+ b, x+b, x>+ ... + b xM2+ Db xm1
Compute:
Degree 2m-2 Polynomial P Q
PQ=a,b, + (ab+a,by) x + (ab,+a,b, +ab,) x2
+...+ (8,50, +a,, Do) X°M3 +a_ b x2M2
Obvious Algorithm:

Compute all a,b, and collect terms
© (m?) time

15

Naive
Divide and Conquer

Assume m=2k

(a, +a,,4 X+ e+ A X2+ a X)X
=Py + Py xk
Q — QO + Q1 Xk

PQ = (Py+Px*)(Qy+Q;x¥)
= Py,Q, + (P1Qy+P,Q)x* + P,Q,x3*

4 sub-problems of size k=m/2 plus linear combining
T(m)=4T(m/2)+cm
Solution T(m) = O(m?)

Karatsuba’s
Algorithm

A better way to compute terms

Compute
I:)OQO
P.Q,
(Po+P)(Qy+Q,) whichis P,Q,+P,Q,+P,Q,+P,Q,
Then
PoQ+P,Q, = (Po+P)(Qo+Q4) - PoQ, - P4Q;
3 sub-problems of size m/2 plus O(m) work
T(m) =3 T(M/2) + cm
T(m) = O(m*) where a =log,3 = 1.59...

;
i

Karatsuba:
Details

PolyMul(P, Q): 2m-1 m m2 0

// P, Q are length m =2k vectors, with PJi], Q[i] being
// the coefficient of x' in polynomials P, Q respectively.

if (m==1) return (P[0]*Q[0]);

Let Pzero be elements 0..k-1 of P; Pone be elements k..m-1
Qzero, Qone : similar

Prod1 = PolyMul(Pzero, Qzero); // result is a (2k-1)-vector

Prod2 = PolyMul(Pone, Qone); // ditto

Pzo = Pzero + Pone; // add corresponding elements
Qzo = Qzero + Qone; // ditto

Prod3 = polyMul(Pzo, Qzo); // another (2k-1)-vector

Mid = Prod3 — Prod1 — Prod2; // subtract corr. elements

R = Prod1 + Shift(Mid, m/2) + Shift(Prod2,m) // a (2m-1)-vector
Return(R);

Multiplication — The Bottom Line

Polynomials
Naive: 0(n2)
Karatsuba: ©(n1-°9--)
Best known: ©(n log n)
"Fast Fourier Transform"
Integers

Similar, but some ugly details re: carries, etc.
gives ©(n log n loglog n),
but mostly unused in practice

19

Recurrences

Where they come from,
how to find them (above)

Next: how to solve them

25

Mergesort (review)

Mergesort: (recursively) sort 2 half-lists,
then merge results.

T(n)=2T(n/2)+cn, n=2
T(1)=0

o O(n)
Solution: ®(nlogn) 3 work

- per

ilg) level

»

26

Solve: T(1) = c

T(n) =2 T(n/2) + cn

Levell Num | Size |Work
0 1=20 | n cn
1 2=211| n/2 2 C n/2
2 | 4=22 | n/4 4 ¢ n/4
i 2 n/2 |2 ¢ n/2
k-1 | 2k1 | n/2k1 |2k-1 o n/2k-1
k 2k | n/2k=1|2% T(1)

27

Solve: T(1) = c

T(n) =4 T(n/2) + cn

Levell Num | Size | Work
0 1=40 | n cn
1 4=41 | n/2 4 cn/2
2 [(16=42 n/4 16 ¢ n/4
i 4 n/2 | 4' ¢ n/2
k-1 | 4k1 | n/2k1 | 4k-1 ¢ n/2k-1
k 4 | n/2k=1 4 T(1)

28

Solve: T(1)=c
T(n) =3 T(n/2) + ¢cn

Levell| Num | Size | Work
O [1=3% n cn
1 | 3=31| n/2 3cn/2
ﬂ 2 |9=32| n/4 9cn/d
@ | 3 | n@ | 3icne
k-1 | 3k1 | n/2k1 | 3k1 ¢ n/2k1
n=2%; k=log,n K 3k | n/2k=1 3k T(1)

Total Work: T(n)= 3K ,3'cn/2’

29

Solve: T(1)=c
T(n) =3 T(N/2) + cn (cont)

k : :
T(n)= Ei=0 3cen /2

k . : _
=cn) 32 Sk o xl
k i
= aniz()l(%) 1
3\ _
cn(Z) : X1

()-1 (x 1)

30

Solve: T(1)=c
T(n) =3 T(n/2) + ¢cn

= 2cn((%)k+1 — l)

(cont.)

31

Solve: T(1)=c
T(n) =3 T(N/2) + cn (cont)

3log2n
= 3cn
210g2n
310g2 n alogb n
= 3cn
n _ (plogs a)logb "
_ 3C3log2n
B blogbn log, a
— 3C(log, 3) -
log, a

_ 0(n1.59...)

32

Master Divide and Conquer
Recurrence

If T(n) = aT(n/b)+cn* for n > b then
if a>bkthen T(n)is ©(n"%?)

if a<bkthen T(n)is ©(nk)

if a = bk then T(n) is ©(n* log n)

Works even if itis [n/b] instead of n/b.

33

Another Example:
Matrix Multiplication —

Strassen’s Method

34

Multiplying Matrices

a,,by, +a,b, +a;by +a,b,,

(y by, + ay,b,, +ayby +ayb,

ay by, +ay,b,, +ayby, +ayb,,

_a41b11 + by +agby +ayb,,

by| b, by by]
by| by by by
by| by, by by
by| by, by by |

a,,b, +a,by, +a;by, +a,b,
ayby, +ay,b,, +ayb;, +ay,b,
ay,by, +ay,by, +ayby, +ay,b,,

ayb, +auby, +agh;, +a,b,

o

(o]

(@]

o

ay,by, +ayby, +a;by +a,b,
ay by, +ay,b,, +ayby, +ayb,
ay,by, +ay,by, +ayby, +ayb,,

A3y + by, +aghy, +ayb,, _

n® multiplications, n3-n? additions

35

Simple Matrix Multiply

fori=1ton
forj=1ton
Cli,j] =0
fork=1ton
Cli,jl = C[i,j] + Ali,k] ™ B[k,]]

36

Multiplying Matrices

ay, Ay | as ay] [by by | by by
Ay Ay | dyz Ay, by, by | by by
d;; Ay A3 Ay by, by, by by
Ay Qg Ay Ay by by by by

ay,by, +a,b,, i+ aiby +ayb, | a,b, +a,b,rasb,, +a,b,

a, by, +ay,b, +ayby +a,b,, |ayby, +a,b,, +ayby, +a,,b,,

ay by, +ayb,, +ayby +ayb, ayb, +ay,b,, +ayby, +ayb,

_a41b11 +apby +agby +ayby, ayb, +ayhy +aghy +ayb,

o

(]

(@]

o

ay,by, +ayby, +aiby, +a,b,
ay by, +ayb,, +ayby, +ayb,,
ay,by, +ay,by, +ayby, +ayb,,

Ay + by, +aghy, +ayb,, _

37

Multiplying Matrices

b, b, b; b,]
by, by by by
by by, | by by
by by | by by |

a,,by, +a,b,, +aby +ay,b,,

Qy, by, + ayb,, +jayb;, + ag4b41

a,,b, +ay,by, +ia;by, +a,b,,

ayby, +ayby, + a23b3g + ag4b42

ay by, +ayb,, +ayby, +ayb,,

_a41b11 + by +agby +ayb,,

ay,by, +ay,by, +ayby, +ay,b,,

Ay, +a,by, +agby, +a,b,

o

(]

(@]

o

ay,by, +ayby, +aiby, +a,b,
ay by, +ayb,, +ayby, +ayb,,
ay,by, +ay,by, +ayby, +ayb,,

Ay + by, +aghy, +ayb,, _

38

Multiplying Matrices

(a,, a, | as ay] [byy by §Da, by
] S R

1
ay, a23 24 [

a3Aa2 a33A A3y B 32 3B 34

3
a41 2l A 2244 _b41 2542 b 2344_

ay,by, +a,b, + a135 +% g 2y, +ayby, +ayby, o 414 é ,by4 +£b34 Bam 44
311"1az4 4y 1014 6224%44

ay by, +ay,b,, +a,, azz 22 +ayby, +ay,by, o + a23 34

\32B02,

ay by, + ayb,, + a33 _‘ﬁﬁ + @by, +ayby +ayby, f o ay b, +a 2b24 +ayby, +ayb,,
11 A A
P Es

R

1
_a41b11 +ayby +a,by, '22!44 s by a42322 +aby +ayb, | o

39

Multiplying Matrices

A,1B{1+A,By | A1Bi+A B,

AzB11+A%B5 | A, B ,+A,,B,,

Counting arithmetic operations:
T(n) =8T(n/2) + 4(n/2)2=8T(n/2) + n2

40

Multiplying Matrices

1 ifn="1
T(n) = {
8T(n/2) + n? if n>1

By Master Recurrence, if
T(n) = aT(n/b)+cnk & a > b* then
T(n) — @(nlogba) _ @(nlog28) _ @(n3)

41

Strassen’s algorithm

Strassen’s algorithm

Multiply matrices using 7 instead of
multiplications (and lots more than 4 additions)

T(n)=7 T(n/2)+cn?
7>22 so T(n) is ©(n'°%’) which is O(n281)
Fastest algorithms theoretically use O(n237%) time

not practical but Strassen’s is practical provided
calculations are exact and we stop recursion
when matrix has size about 100 (maybe 10)

42

The algorithm

Py=A2(By1+Byy)

Ps= (Aq1- A12)Byy

Ps= (Ags- A1) (Byy - Byy)
Pe= (Ay1- Az1)(Bya- Byy)
Pz=(Az - A1) (By1+Byy)
Ci1= P1+P;

C,i= P+P+P+P;

P,=A,(Byy+By))
I34 - (A22 } A21)Bzz

C12 — P2+P3+P6'P7
Coo=Py+P,

43

Another D&C Example:
Fast exponentiation

Power(a,n)
Input: integer n and number a
Output: a"

Obvious algorithm
n-1 multiplications

Observation:
if n is even, n=2m, then a"=a™.am

44

Divide & Conquer Algorithm

Power(a,n)
if n=0 then
return(1)
else
X <—Power(a,|n/2])
if n is even then
return(x-x)
else
return(a-x-x)

45

Analysis

Worst-case recurrence
T(n) = T(|n/2])+2

By master theorem
T(n) = O(log n) (a=1, b=2, k=0)

More precise analysis:
T(n)= [log,n] + # of 1’s in n’s binary representation

46

A Practical Application- RSA

Instead of a” want a” mod N
a* mod N = ((a' mod N)-(al mod N)) mod N
same algorithm applies with each x-y replaced by
((x mod N)+(y mod N)) mod N

In RSA cryptosystem (widely used for security)
need a" mod N where a, n, N each typically have 1024 bits

Power: at most 2048 multiplies of 1024 bit numbers
relatively easy for modern machines

Naive algorithm: 21924 multiplies

47

Another Example: Binary search
for roots (bisection method)

]] e
ety ety S
s e G

S,

e

]

e

o Ll Ll Ll o Ll Ll Ll o Ll
s s]

]]]
s s]
e A i e A i e

R R, A R,

Given:

continuous function f and two points a<b with
f(a)<0 and f(b)>0

Find:
approximation to ¢ s.t. f(c)=0 and a<c<b

48

Divide and Conquer Summary

Powerful technique, when applicable

Divide large problem into a few smaller
problems of the same type

Choosing subproblems of roughly equal size is
usually critical

Examples:

Merge sort, quicksort (sort of), polynomial
multiplication, FFT, Strassen's matrix multiplication
algorithm, powering, binary search, root finding by
bisection, ...

49

