CSE 417: Algorithms and
Computational Complexity

Winter 2005
Instructor: W. L. Ruzzo
Lectures 13-17

Divide and Conquer Algorithms



The Divide and Conquer
Paradigm

Outline:
General Idea
Review of Merge Sort

Why does it work?
Importance of balance
Importance of super-linear growth
Two interesting applications
Polynomial Multiplication
Matrix Multiplication

Finding & Solving Recurrences



Algorithm Design Techniques

Divide & Conquer
Reduce problem to one or more sub-problems of the

same type
Typically, each sub-problem is at most a constant
fraction of the size of the original problem

e.g. Mergesort, Binary Search, Strassen’s Algorithm,
Quicksort (kind of)



Mergesort (review)

Mergesort: (recursively) sort 2 half-lists,
then merge results.

T(n)=2T(n/2)+cn, n=2
T(1)=0

o O(n)
Solution: ®(nlogn) 3 work

- per

ilg) level

»



Merge Sort

MS(A: array[1..n]) returns array[1..n]{
If(n=1) return A[1];
New U:array[1:n/2] = MS(A[1..n/2));
New L:array[1:n/2] = MS(A[n/2+1..n]);

Return(Merge(U,L)); \f\f \/

} split sort merge

Merge(U,L: array[1..n]) {
New C: array[1..2n];
a=1; b=1;
Fori=11o2n
C[i] = “smaller of U[a], L[b] and correspondingly a++ or b++”;
Return C;

}
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Going From Code to Recurrence

Carefully define what you’re counting, and

write it down!

“Let C(n) be the number of comparisons between
sort keys used by MergeSort when sorting a list of
lengthn = 17

In code, clearly separate base case from
recursive case, highlight recursive calls,

and
Write Recurrence(s)



Merge Sort

Base Case
MS(A: arraL .n]) returns array[1..n] {

If(n=1) return A

[1]; .
New L:array[1:n/2] mv— Recursive
New R:array[1:n/2] W calls
Return(Merge(L,R))

}

Merge(A,B: array[1..n]) { Recursive
New C: array[1..2n]; k case
a=1; b=1;
Fori=1to2n/!
C[i] = smaller of \[a], B[b] and a++ or b++";
Return C;

}




The Recurrence

Base case
r /

0 1f n=1

C(n) =+ |
2C(n/2)+(n-1) 1tn>1
/

Recursive calls

Total time: proportional to C(n)
(loops, copying data, parameter passing, etc.)



Why Balanced Subdivision?

Alternative "divide & conquer" algorithm:
Sort n-1
Sort last 1
Merge them

T(n)=T(n-1)+T(1)+3n for n=2

T(1)=0
Solution: 3n + 3(n-1) + 3(n-2) ... = B(n?)



Another D&C Approach

Suppose we've already invented
DumbSort, taking time n?

Try Just One Level of divide & conquer:

DumbSort(first n/2 elements)
DumbSort(last n/2 elements)
Merge results

Time: (n/2)? + (n/2)2 + n=n?%/2 + n
Almost twice as fast!
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Another D&C Approach, cont.

Moral 1:

Two problems of half size are better than one
full-size problem, even given the O(n) overhead
of recombining, since the base algorithm has
super-linear complexity.

Moral 2:

If a little's good, then more's better—two levels
of D&C would be almost 4 times faster, 3 levels
almost 8, etc., even though overhead is
growing. Best is usually full recursion down to
some small constant size (balancing "work" vs
"overhead").
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Another D&C Approach, cont.

Moral 3: unbalanced division less good:

(.1n)2 + (.9n)2 + n = .82n° + n

The 18% savings compounds significantly if you carry
recursion to more levels, actually giving O(nlogn), but with a
bigger constant. So worth doing if you can’t get 50-50 spilit,
but balanced is better if you can.

This is intuitively why Quicksort with random splitter is good
— badly unbalanced splits are rare, and not instantly fatal.

(1)2+(n-1)2+n=n?-2n+2 +n
Little improvement here.
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Another D&C Example:
Multiplying Faster

On the first HW you analyzed our usual
algorithm for multiplying numbers
©(n?) time

We can do better!

We’'ll describe the basic ideas by multiplying
polynomials rather than integers

Advantage is we don’t get confused by
worrying about carries at first
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Notes on Polynomials

These are just formal sequences of
coefficients so when we show something

multiplied by x¥ it just means shifted k places
to the left — basically no work

Usual | 3x2 + 2X + 2
Polynomial X2 - 33X + 1

-Ox° - 6X?2 - 6X
3x4 + 2x5+ 2x?
3x4-7x3 - X2-4Xx+ 2




Polynomial EEEE

Multiplication T

Given: EEEEEEN

Degree m-1 polynomials P and Q
P=a,+a, x+a,x?+...+a,,Xx"% +a_ xm
Q=Dby+ b, x+b, x>+ ... + b xM2+ Db xm1
Compute:
Degree 2m-2 Polynomial P Q
PQ=a,b, + (ab+a,by) x + (ab,+a,b, +ab,) x2
+...+ (8,50, +a,, Do) X°M3 +a_ b x2M2
Obvious Algorithm:

Compute all a,b, and collect terms
© (m?) time
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Naive
Divide and Conquer

Assume m=2k

(a, +a,,4 X+ e+ A X2+ a X)X
=Py + Py xk
Q — QO + Q1 Xk

PQ = (Py+Px*)(Qy+Q;x¥)
= Py,Q, + (P1Qy+P,Q )x* + P,Q,x3*

4 sub-problems of size k=m/2 plus linear combining
T(m)=4T(m/2)+cm
Solution T(m) = O(m?)



Karatsuba’s
Algorithm

A better way to compute terms

Compute
I:)OQO
P.Q,
(Po+P)(Qy+Q,) whichis P,Q,+P,Q,+P,Q,+P,Q,
Then
PoQ+P,Q, = (Po+P)(Qo+Q4) - PoQ, - P4Q;
3 sub-problems of size m/2 plus O(m) work
T(m) =3 T(M/2) + cm
T(m) = O(m*) where a =log,3 = 1.59...




;
i

Karatsuba:
Details

PolyMul(P, Q): 2m-1 m m2 0

// P, Q are length m =2k vectors, with PJi], Q[i] being
// the coefficient of x' in polynomials P, Q respectively.

if (m==1) return (P[0]*Q[0]);

Let Pzero be elements 0..k-1 of P; Pone be elements k..m-1
Qzero, Qone : similar

Prod1 = PolyMul(Pzero, Qzero); // result is a (2k-1)-vector

Prod2 = PolyMul(Pone, Qone); // ditto

Pzo = Pzero + Pone; // add corresponding elements
Qzo = Qzero + Qone; // ditto

Prod3 = polyMul(Pzo, Qzo); // another (2k-1)-vector

Mid = Prod3 — Prod1 — Prod2; // subtract corr. elements

R = Prod1 + Shift(Mid, m/2) + Shift(Prod2,m) // a (2m-1)-vector
Return( R );



Multiplication — The Bottom Line

Polynomials
Naive: 0(n2)
Karatsuba: ©(n1-°9--)
Best known: ©(n log n)
"Fast Fourier Transform"
Integers

Similar, but some ugly details re: carries, etc.
gives ©(n log n loglog n),
but mostly unused in practice
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Recurrences

Where they come from,
how to find them (above)

Next: how to solve them
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Mergesort (review)

Mergesort: (recursively) sort 2 half-lists,
then merge results.

T(n)=2T(n/2)+cn, n=2
T(1)=0

o O(n)
Solution: ®(nlogn) 3 work

- per

ilg) level

»
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Solve: T(1) = c

T(n) =2 T(n/2) + cn

Levell Num | Size |Work
0 1=20 | n cn
1 2=211| n/2 2 C n/2
2 | 4=22 | n/4 4 ¢ n/4
i 2 n/2 |2 ¢ n/2
k-1 | 2k1 | n/2k1 |2k-1 o n/2k-1
k 2k | n/2k=1|2% T(1)
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Solve: T(1) = c

T(n) =4 T(n/2) + cn

Levell Num | Size | Work
0 1=40 | n cn
1 4=41 | n/2 4 cn/2
2 [(16=42 n/4 16 ¢ n/4
i 4 n/2 | 4' ¢ n/2
k-1 | 4k1 | n/2k1 | 4k-1 ¢ n/2k-1
k 4 | n/2k=1 4 T(1)
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Solve: T(1)=c
T(n) =3 T(n/2) + ¢cn

Levell| Num | Size | Work
O [1=3% n cn
1 | 3=31| n/2 3cn/2
ﬂ 2 |9=32| n/4 9cn/d
@ | 3 | n@ | 3icne
k-1 | 3k1 | n/2k1 | 3k1 ¢ n/2k1
n=2%; k=log,n K 3k | n/2k=1 3k T(1)

Total Work: T(n)= 3K ,3'cn/2’
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Solve: T(1)=c
T(n) =3 T(N/2) + cn  (cont)

k : :
T(n)= Ei=0 3cen /2

k . : _
=cn) 32 Sk o xl
k i
= aniz()l(%) 1
3\ _
cn(Z) : X1

()-1 (x 1)
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Solve: T(1)=c
T(n) =3 T(n/2) + ¢cn

= 2cn((%)k+1 — l)

(cont.)
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Solve: T(1)=c
T(n) =3 T(N/2) + cn  (cont)

3log2n
= 3cn
210g2n
310g2 n alogb n
= 3cn
n _ ( plogs a )logb "
_ 3C3log2n
B blogbn log, a
— 3C( log, 3 ) -
log, a

_ 0(n1.59...)
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Master Divide and Conquer
Recurrence

If T(n) = aT(n/b)+cn* for n > b then
if a>bkthen T(n)is ©(n"%?)

if a<bkthen T(n)is ©(nk)

if a = bk then T(n) is ©(n* log n)

Works even if itis [n/b] instead of n/b.
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Another Example:
Matrix Multiplication —

Strassen’s Method
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Multiplying Matrices

a,,by, +a,b, +a;by +a,b,,

(y by, + ay,b,, +ayby +ayb,

ay by, +ay,b,, +ayby, +ayb,,

_a41b11 + by +agby +ayb,,

by| b, by by]
by| by by by
by| by, by by
by| by, by by |

a,,b, +a,by, +a;by, +a,b,
ayby, +ay,b,, +ayb;, +ay,b,
ay,by, +ay,by, +ayby, +ay,b,,

ayb, +auby, +agh;, +a,b,

o

(o]

(@]

o

ay,by, +ayby, +a;by +a,b,
ay by, +ay,b,, +ayby, +ayb,
ay,by, +ay,by, +ayby, +ayb,,

A3y + by, +aghy, +ayb,, _

n® multiplications, n3-n? additions
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Simple Matrix Multiply

fori=1ton
forj=1ton
Cli,j] =0
fork=1ton
Cli,jl = C[i,j] + Ali,k] ™ B[k,]]
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Multiplying Matrices

ay, Ay | as ay] [by by | by by
Ay Ay | dyz Ay, by, by | by by
d;; Ay A3 Ay by, by, by by
Ay Qg Ay Ay by by by by

ay,by, +a,b,, i+ aiby +ayb, | a,b, +a,b,rasb,, +a,b,

a, by, +ay,b, +ayby +a,b,, |ayby, +a,b,, +ayby, +a,,b,,

ay by, +ayb,, +ayby +ayb,  ayb, +ay,b,, +ayby, +ayb,

_a41b11 +apby +agby +ayby,  ayb, +ayhy +aghy +ayb,

o

(]

(@]

o

ay,by, +ayby, +aiby, +a,b,
ay by, +ayb,, +ayby, +ayb,,
ay,by, +ay,by, +ayby, +ayb,,

Ay + by, +aghy, +ayb,, _
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Multiplying Matrices

b, b, b; b,]
by, by by by
by by, | by by
by by | by by |

a,,by, +a,b,, +aby +ay,b,,

Qy, by, + ayb,, +jayb;, + ag4b41

a,,b, +ay,by, +ia;by, +a,b,,

ayby, +ayby, + a23b3g + ag4b42

ay by, +ayb,, +ayby, +ayb,,

_a41b11 + by +agby +ayb,,

ay,by, +ay,by, +ayby, +ay,b,,

Ay, +a,by, +agby, +a,b,

o

(]

(@]

o

ay,by, +ayby, +aiby, +a,b,
ay by, +ayb,, +ayby, +ayb,,
ay,by, +ay,by, +ayby, +ayb,,

Ay + by, +aghy, +ayb,, _
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Multiplying Matrices

(a,, a, | as ay] [byy by §Da, by
] S R

1
ay, a23 24 [

a3Aa2 a33A A3y B 32 3B 34

3
_a41 2l A 2244_ _b41 2542 b 2344_

ay,by, +a,b, + a135 +% g 2y, +ayby, +ayby, o 414 é ,by4 +£b34 Bam 44
311"1az4 4y 1014 6224%44

ay by, +ay,b,, +a,, azz 22 +ayby, +ay,by, o + a23 34

\32B02,

ay by, + ayb,, + a33 _‘ﬁﬁ + @by, +ayby +ayby, f o ay b, +a 2b24 +ayby, +ayb,,
11 A A
P Es

R

1
_a41b11 +ayby +a,by, '22!44 s by a42322 +aby +ayb, | o
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Multiplying Matrices

A,1B{1+A,By | A1Bi+A B,

AzB11+A%B5 | A, B ,+A,,B,,

Counting arithmetic operations:
T(n) =8T(n/2) + 4(n/2)2=8T(n/2) + n2
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Multiplying Matrices

1 ifn="1
T(n) = {
8T(n/2) + n? if n>1

By Master Recurrence, if
T(n) = aT(n/b)+cnk & a > b* then
T(n) — @(nlogba) _ @(nlog28) _ @(n3)
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Strassen’s algorithm

Strassen’s algorithm

Multiply matrices using 7 instead of
multiplications (and lots more than 4 additions)

T(n)=7 T(n/2)+cn?
7>22 so T(n) is ©(n'°%’ ) which is O(n281)
Fastest algorithms theoretically use O(n237%) time

not practical but Strassen’s is practical provided
calculations are exact and we stop recursion
when matrix has size about 100 (maybe 10)

42



The algorithm

Py=A2(By1+Byy)

Ps= (Aq1- A12)Byy

Ps= (Ags- A1) (Byy - Byy)
Pe= (Ay1- Az1)(Bya- Byy)
Pz=(Az - A1) (By1+Byy)
Ci1= P1+P;

C,i= P+P+P+P;

P,=A,(Byy+By))
I34 - (A22 } A21)Bzz

C12 — P2+P3+P6'P7
Coo=Py+P,
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Another D&C Example:
Fast exponentiation

Power(a,n)
Input: integer n and number a
Output: a"

Obvious algorithm
n-1 multiplications

Observation:
if n is even, n=2m, then a"=a™.am
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Divide & Conquer Algorithm

Power(a,n)
if n=0 then
return(1)
else
X <—Power(a,|n/2])
if n is even then
return(x-x)
else
return(a-x-x)
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Analysis

Worst-case recurrence
T(n) = T(|n/2])+2

By master theorem
T(n) = O(log n) (a=1, b=2, k=0)

More precise analysis:
T(n)= [log,n] + # of 1’s in n’s binary representation
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A Practical Application- RSA

Instead of a” want a” mod N
a* mod N = ((a' mod N)-(al mod N)) mod N
same algorithm applies with each x-y replaced by
((x mod N)+(y mod N)) mod N

In RSA cryptosystem (widely used for security)
need a" mod N where a, n, N each typically have 1024 bits

Power: at most 2048 multiplies of 1024 bit numbers
relatively easy for modern machines

Naive algorithm: 21924 multiplies

47



Another Example: Binary search
for roots (bisection method)

] ] e
ety ety S
s e G

S,

e

]

e

o Ll Ll Ll o Ll Ll Ll o Ll
s s ]

] ] ]
s s ]
e A i e A i e

R R, A R,

Given:

continuous function f and two points a<b with
f(a)<0 and f(b)>0

Find:
approximation to ¢ s.t. f(c)=0 and a<c<b
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Divide and Conquer Summary

Powerful technique, when applicable

Divide large problem into a few smaller
problems of the same type

Choosing subproblems of roughly equal size is
usually critical

Examples:

Merge sort, quicksort (sort of), polynomial
multiplication, FFT, Strassen's matrix multiplication
algorithm, powering, binary search, root finding by
bisection, ...
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