CSE 417: Algorithms and Computational Complexity

Winter 2005

Instructor: W. L. Ruzzo

Lectures 13-17

Divide and Conquer Algorithms

The Divide and Conquer Paradigm

Outline:

- General Idea
- Review of Merge Sort
- Why does it work?
 - Importance of balance
 - Importance of super-linear growth
- Two interesting applications
 - Polynomial Multiplication
 - Matrix Multiplication
- Finding & Solving Recurrences

Algorithm Design Techniques

- Divide & Conquer
 - Reduce problem to one or more sub-problems of the same type
 - I Typically, each sub-problem is at most a constant fraction of the size of the original problem
 - e.g. Mergesort, Binary Search, Strassen's Algorithm, Quicksort (kind of)

Mergesort (review)

Mergesort: (recursively) sort 2 half-lists, then merge results.

- T(n)=2T(n/2)+cn, $n \ge 2$
- T(1)=0
- Solution: $\Theta(n \log n)$

Merge Sort

```
MS(A: array[1..n]) returns array[1..n] {
    If(n=1) return A[1];
   New U:array[1:n/2] = MS(A[1..n/2]);
   New L:array[1:n/2] = MS(A[n/2+1..n]);
    Return(Merge(U,L));
                                                 split
                                                        sort
                                                               merge
Merge(U,L: array[1..n]) {
   New C: array[1..2n];
   a=1; b=1;
    For i = 1 to 2n
      C[i] = "smaller of U[a], L[b] and correspondingly a++ or b++";
    Return C;
```

Going From Code to Recurrence

 Carefully define what you're counting, and write it down!

"Let C(n) be the number of comparisons between sort keys used by MergeSort when sorting a list of length $n \ge 1$ "

- 2. In code, clearly separate base case from recursive case, highlight recursive calls, and operations being counted.
- 3. Write Recurrence(s)

Merge Sort

```
Base Case
MS(A: array[1..n]) returns array[1..n] {
   If(n=1) return A[1];
                                                    Recursive
   New L:array[1:n/2] \in MS(A[1..n/2]);
                                                    calls
   New R:array[1:n/2] = MS(A[n/2+1..n])
   Return(Merge(L,R));
                                                    Recursive
Merge(A,B: array[1..n]) {
   New C: array[1..2n];
                                                    case
   a=1; b=1;
                                                    Operations
   For i = 1 to 2n {
      C[i] =  smaller of A[a], B[b] and a++ or b++";
                                                    being
   Return C;
                                                    counted
```

The Recurrence

Recursive calls

Base case

$$C(n) = \begin{cases} 0 & \text{if } n = 1 \\ 2C(n/2) + (n-1) & \text{if } n > 1 \end{cases}$$
One compare per

Total time: proportional to C(n)

(loops, copying data, parameter passing, etc.)

element added to

merged list,

except the last.

Why Balanced Subdivision?

- Alternative "divide & conquer" algorithm:
 - Sort n-1
 - Sort last 1
 - Merge them
- T(n)=T(n-1)+T(1)+3n for $n \ge 2$
- T(1)=0
- Solution: $3n + 3(n-1) + 3(n-2) \dots = \Theta(n^2)$

Another D&C Approach

- Suppose we've already invented DumbSort, taking time n²
- Try *Just One Level* of divide & conquer:
 - DumbSort(first n/2 elements)
 - DumbSort(last n/2 elements)
 - Merge results
- Time: $(n/2)^2 + (n/2)^2 + n = n^2/2 + n$
 - Almost twice as fast!

Another D&C Approach, cont.

Moral 1:

Two problems of half size are *better* than one full-size problem, even given the O(n) overhead of recombining, since the base algorithm has *super-linear* complexity.

Moral 2:

If a little's good, then more's better—two levels of D&C would be almost 4 times faster, 3 levels almost 8, etc., even though overhead is growing. Best is usually full recursion down to some small constant size (balancing "work" vs "overhead").

11

Another D&C Approach, cont.

- Moral 3: unbalanced division less good:
 - $(.1n)^2 + (.9n)^2 + n = .82n^2 + n$
 - The 18% savings compounds significantly if you carry recursion to more levels, actually giving O(nlogn), but with a bigger constant. So worth doing if you can't get 50-50 split, but balanced is better if you can.
 - This is intuitively why Quicksort with random splitter is good
 badly unbalanced splits are rare, and not instantly fatal.
 - $(1)^2 + (n-1)^2 + n = n^2 2n + 2 + n$
 - Little improvement here.

Another D&C Example: Multiplying Faster

- On the first HW you analyzed our usual algorithm for multiplying numbers
 - $\Theta(n^2)$ time
- We can do better!
 - We'll describe the basic ideas by multiplying polynomials rather than integers
 - Advantage is we don't get confused by worrying about carries at first

Notes on Polynomials

- These are just formal sequences of coefficients so when we show something multiplied by x^k it just means shifted k places to the left basically no work
- Usual Polynomial Multiplication:

$$3x^{2} + 2x + 2$$

$$x^{2} - 3x + 1$$

$$3x^{2} + 2x + 2$$

$$-9x^{3} - 6x^{2} - 6x$$

$$-9x^{3} - 6x^{2} - 6x$$

$$3x^{4} + 2x^{3} + 2x^{2}$$

$$3x^{4} - 7x^{3} - x^{2} - 4x + 2$$

Polynomial Multiplication

- Given:
 - Degree m-1 polynomials P and Q

$$P = a_0 + a_1 x + a_2 x^2 + ... + a_{m-2}x^{m-2} + a_{m-1}x^{m-1}$$

$$Q = b_0 + b_1 x + b_2 x^2 + ... + b_{m-2}x^{m-2} + b_{m-1}x^{m-1}$$

- Compute:
 - Degree 2m-2 Polynomial P Q

$$PQ = a_0b_0 + (a_0b_1 + a_1b_0) x + (a_0b_2 + a_1b_1 + a_2b_0) x^2 +... + (a_{m-2}b_{m-1} + a_{m-1}b_{m-2}) x^{2m-3} + a_{m-1}b_{m-1} x^{2m-2}$$

- Obvious Algorithm:
 - Compute all a_ib_i and collect terms
 - **□** (m²) time

Naive Divide and Conquer

Assume m=2k

$$P = (a_0 + a_1 x + a_2 x^2 + ... + a_{k-2} x^{k-2} + a_{k-1} x^{k-1}) + (a_k + a_{k+1} x + ... + a_{m-2} x^{k-2} + a_{m-1} x^{k-1}) x^k$$

$$= P_0 + P_1 x^k$$

$$Q = Q_0 + Q_1 x^k$$

$$PQ = (P_0 + P_1 x^k)(Q_0 + Q_1 x^k)$$

= $P_0Q_0 + (P_1Q_0 + P_0Q_1)x^k + P_1Q_1 x^{2k}$

- 4 sub-problems of size k=m/2 plus linear combining
 - T(m)=4T(m/2)+cm
 - Solution $T(m) = O(m^2)$

Karatsuba's Algorithm

- A better way to compute terms
 - Compute
 - P_0Q_0
 - IP_1Q_1
 - $(P_0+P_1)(Q_0+Q_1)$ which is $P_0Q_0+P_1Q_0+P_0Q_1+P_1Q_1$
 - Then

$$P_0Q_1+P_1Q_0=(P_0+P_1)(Q_0+Q_1)-P_0Q_0-P_1Q_1$$

3 sub-problems of size m/2 plus O(m) work

- T(m) = 3 T(m/2) + cm
- $T(m) = O(m^{α})$ where $α = log_2 3 = 1.59...$

Karatsuba: **Details**

```
Pone Pzerb
          = Qone Qzero
                Prod1
                m/2
2m-1
           m
                       O
```

```
PolyMul(P, Q):
```

```
// P, Q are length m =2k vectors, with P[i], Q[i] being
// the coefficient of x^i in polynomials P, Q respectively.
if (m==1) return (P[0]*Q[0]);
Let Pzero be elements 0..k-1 of P; Pone be elements k..m-1
Qzero, Qone: similar
Prod1 = PolyMul(Pzero, Qzero);
                                    // result is a (2k-1)-vector
Prod2 = PolyMul(Pone, Qone);
                                    // ditto
                                    // add corresponding elements
Pzo = Pzero + Pone;
Qzo = Qzero + Qone;
                                    // ditto
Prod3 = polyMul(Pzo, Qzo);
                                    // another (2k-1)-vector
Mid = Prod3 - Prod1 - Prod2;
                                   // subtract corr. elements
R = Prod1 + Shift(Mid, m/2) + Shift(Prod2,m) // a (2m-1)-vector
Return(R);
```

Multiplication – The Bottom Line

- Polynomials
 - Naïve: $\Theta(n^2)$
 - Karatsuba: $\Theta(n^{1.59...})$
 - Best known: Θ(n log n)
 - "Fast Fourier Transform"
- Integers
 - Similar, but some ugly details re: carries, etc. gives Θ(n log n loglog n),
 - but mostly unused in practice

Recurrences

Where they come from, how to find them (above)

Next: how to solve them

Mergesort (review)

Mergesort: (recursively) sort 2 half-lists, then merge results.

- T(n)=2T(n/2)+cn, $n \ge 2$
- T(1)=0
- Solution: $\Theta(n \log n)$

Solve: T(1) = cT(n) = 2 T(n/2) + cn

Level	Num	Size	Work
0	1=20	n	cn
1	$2=2^{1}$	n/2	2 c n/2
2	4=2 ²	n/4	4 c n/4
i	2 ⁱ	n/2 ⁱ	2 ⁱ c n/2 ⁱ
k-1	2 ^{k-1}	n/2 ^{k-1}	2 ^{k-1} c n/2 ^{k-1}
k	2 ^k	n/2 ^k =1	2 ^k T(1)

Total work: add last col

Solve: T(1) = cT(n) = 4 T(n/2) + cn

Level	Num	Size	Work
0	1=4 ⁰	n	cn
1	4=4 ¹	n/2	4 c n/2
2	16=4 ²	n/4	16 c n/4
 i	 4 ⁱ	 n/2 ⁱ	 4 ⁱ c n/2 ⁱ
 k-1	 4 ^{k-1}	 n/2 ^{k-1}	 4 ^{k-1} c n/2 ^{k-1}
k	4 ^k	n/2 ^k =1	4 ^k T(1)

Solve:
$$T(1) = c$$

 $T(n) = 3 T(n/2) + cn$

n	=	2 ^k	•	k	=	log ₂	n
			7			- J	

Level	Num	Size	Work
0	1=30	n	cn
1	$3=3^{1}$	n/2	3 c n/2
2	$9=3^{2}$	n/4	9 c n/4
i	3 ⁱ	n/2 ⁱ	3 ⁱ c n/2 ⁱ
k-1	3 ^{k-1}	n/2 ^{k-1}	3 ^{k-1} c n/2 ^{k-1}
k	3 ^k	n/2 ^k =1	3 ^k T(1)

Total Work:
$$T(n) = \sum_{i=0}^{k} 3^{i} cn / 2^{i}$$

Solve:
$$T(1) = c$$

 $T(n) = 3 T(n/2) + cn$ (cont.)

$$T(n) = \sum_{i=0}^{k} 3^{i} cn / 2^{i}$$

$$= cn \sum_{i=0}^{k} 3^{i} / 2^{i}$$

$$= cn \sum_{i=0}^{k} \left(\frac{3}{2}\right)^{i}$$

$$= cn \frac{\left(\frac{3}{2}\right)^{k+1} - 1}{\left(\frac{3}{2}\right) - 1}$$

$$= xn \frac{\left(\frac{3}{2}\right)^{k+1} - 1}{\left(x \neq 1\right)}$$

$$= xn \frac{\left(\frac{3}{2}\right)^{k+1} - 1}{\left(x \neq 1\right)}$$

Solve:
$$T(1) = c$$

 $T(n) = 3 T(n/2) + cn$ (cont.)

$$=2cn\left(\left(\frac{3}{2}\right)^{k+1}-1\right)$$

$$< 2cn\left(\frac{3}{2}\right)^{k+1}$$

$$=3cn\left(\frac{3}{2}\right)^k$$

$$=3cn\frac{3^k}{2^k}$$

Solve:
$$T(1) = c$$

 $T(n) = 3 T(n/2) + cn$ (cont.)

$$= 3cn \frac{3^{\log_2 n}}{2^{\log_2 n}}$$

$$= 3cn \frac{3^{\log_2 n}}{n}$$

$$= 3c 3^{\log_2 n}$$

$$= 3c (n^{\log_2 3})$$

$$= O(n^{1.59...})$$

$$a^{\log_b n}$$

$$= (b^{\log_b a})^{\log_b n}$$

$$= (b^{\log_b n})^{\log_b a}$$

$$= n^{\log_b a}$$

Master Divide and Conquer Recurrence

- If $T(n) = aT(n/b) + cn^k$ for n > b then
 - If $a > b^k$ then T(n) is $\Theta(n^{\log_b a})$
 - if $a < b^k$ then T(n) is $\Theta(n^k)$
 - if $a = b^k$ then T(n) is $\Theta(n^k \log n)$
- Works even if it is [n/b] instead of n/b.

Another Example:

Matrix Multiplication –

Strassen's Method

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} \bullet \begin{bmatrix} b_{11} & b_{12} & b_{13} & b_{14} \\ b_{21} & b_{22} & b_{23} & b_{24} \\ b_{31} & b_{32} & b_{33} & b_{34} \\ b_{41} & b_{42} & b_{43} & b_{44} \end{bmatrix}$$

$$\begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} + a_{14}b_{41} \\ a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31} + a_{24}b_{41} \\ a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32} + a_{24}b_{42} & \circ & a_{21}b_{14} + a_{22}b_{24} + a_{23}b_{34} + a_{24}b_{44} \\ a_{31}b_{11} + a_{32}b_{21} + a_{33}b_{31} + a_{34}b_{41} & a_{31}b_{12} + a_{32}b_{22} + a_{33}b_{32} + a_{34}b_{42} & \circ & a_{31}b_{14} + a_{32}b_{24} + a_{33}b_{34} + a_{34}b_{44} \\ a_{31}b_{12} + a_{32}b_{22} + a_{33}b_{32} + a_{34}b_{42} & \circ & a_{31}b_{14} + a_{32}b_{24} + a_{33}b_{34} + a_{34}b_{44} \end{bmatrix}$$

 $\begin{vmatrix} a_{41}b_{11} + a_{42}b_{21} + a_{43}b_{31} + a_{44}b_{41} & a_{41}b_{12} + a_{42}b_{22} + a_{43}b_{32} + a_{44}b_{42} & \circ & a_{41}b_{14} + a_{42}b_{24} + a_{43}b_{34} + a_{44}b_{44} \end{vmatrix}$

n³ multiplications, n³-n² additions

Simple Matrix Multiply

```
for i = 1 to n

for j = I to n

C[i,j] = 0

for k = 1 to n

C[i,j] = C[i,j] + A[i,k] * B[k,j]
```

n³ multiplications, n³-n² additions

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} \bullet \begin{bmatrix} b_{11} & b_{12} & b_{13} & b_{14} \\ b_{21} & b_{22} & b_{23} & b_{24} \\ b_{31} & b_{32} & b_{33} & b_{34} \\ b_{41} & b_{42} & b_{43} & b_{44} \end{bmatrix}$$

$$= \begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} \\ a_{21}b_{11} + a_{22}b_{21} \\ a_{31}b_{11} + a_{32}b_{21} + a_{33}b_{31} + a_{44}b_{41} \\ a_{41}b_{11} + a_{42}b_{21} + a_{43}b_{31} + a_{44}b_{41} \\ a_{41}b_{12} + a_{42}b_{22} + a_{43}b_{32} + a_{44}b_{42} \\ a_{41}b_{11} + a_{42}b_{21} + a_{43}b_{31} + a_{44}b_{41} \\ a_{41}b_{12} + a_{42}b_{22} + a_{43}b_{32} + a_{44}b_{42} \\ a_{41}b_{12} + a_{42}b_{21} + a_{43}b_{31} + a_{44}b_{41} \\ a_{41}b_{12} + a_{42}b_{22} + a_{43}b_{32} + a_{44}b_{42} \\ a_{41}b_{12} + a_{42}b_{21} + a_{43}b_{31} + a_{44}b_{41} \\ a_{41}b_{12} + a_{42}b_{22} + a_{43}b_{32} + a_{44}b_{42} \\ a_{41}b_{12} + a_{42}b_{21} + a_{43}b_{31} + a_{44}b_{41} \\ a_{41}b_{12} + a_{42}b_{22} + a_{43}b_{32} + a_{44}b_{42} \\ a_{41}b_{12} + a_{42}b_{21} + a_{43}b_{31} + a_{44}b_{41} \\ a_{41}b_{12} + a_{42}b_{22} + a_{43}b_{32} + a_{44}b_{42} \\ a_{41}b_{12} + a_{42}b_{21} + a_{43}b_{31} + a_{44}b_{41} \\ a_{41}b_{12} + a_{42}b_{22} + a_{43}b_{32} + a_{44}b_{42} \\ a_{41}b_{12} + a_{42}b_{21} + a_{43}b_{31} + a_{44}b_{41} \\ a_{41}b_{12} + a_{42}b_{22} + a_{43}b_{32} + a_{44}b_{42} \\ a_{41}b_{12} + a_{42}b_{21} + a_{43}b_{31} + a_{44}b_{41} \\ a_{41}b_{12} + a_{42}b_{22} + a_{43}b_{32} + a_{44}b_{42} \\ a_{41}b_{12} + a_{42}b_{21} + a_{43}b_{31} + a_{44}b_{41} \\ a_{41}b_{12} + a_{42}b_{22} + a_{43}b_{32} + a_{44}b_{42} \\ a_{41}b_{12} + a_{42}b_{21} + a_{42}b_{22} \\ a_{41}b_{12} + a_{42}b_{21} + a_{42}b_{21} \\ a_{41}b_{12} + a_{42}b_{21} + a_{42}b_{21} \\ a_{41}b_{12} + a_{42}b_{21} + a_{42}b_{22} \\ a_{41}b_{12} + a_{42}b_{21} \\ a_{41}b_{12} + a_{42}b_{21} \\ a_{41}b_{12} + a_{42}b_{21} \\ a_{42}b_{12} \\ a_{41}b_{12} + a_{42}b_{21} \\ a_{42}b_{12} \\ a_{41}b_{12} + a_{42}b_{21} \\ a_{42}b_{12} \\$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} \bullet \begin{bmatrix} b_{11} & b_{12} & b_{13} & b_{14} \\ b_{21} & b_{22} & b_{23} & b_{24} \\ b_{31} & b_{32} & b_{33} & b_{34} \\ b_{41} & b_{42} & b_{43} & b_{44} \end{bmatrix}$$

$$=\begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} + a_{14}b_{41} & a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32} + a_{14}b_{42} & \circ & a_{11}b_{14} + a_{12}b_{24} + a_{13}b_{34} + a_{14}b_{44} \\ a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31} + a_{24}b_{41} & a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32} + a_{24}b_{42} & \circ & a_{21}b_{14} + a_{22}b_{24} + a_{23}b_{34} + a_{24}b_{44} \\ a_{31}b_{11} + a_{32}b_{21} + a_{33}b_{31} + a_{34}b_{41} & a_{31}b_{12} + a_{32}b_{22} + a_{33}b_{32} + a_{34}b_{42} & \circ & a_{31}b_{14} + a_{32}b_{24} + a_{33}b_{34} + a_{34}b_{44} \\ a_{41}b_{11} + a_{42}b_{21} + a_{43}b_{31} + a_{44}b_{41} & a_{41}b_{12} + a_{42}b_{22} + a_{43}b_{32} + a_{44}b_{42} & \circ & a_{41}b_{14} + a_{42}b_{24} + a_{43}b_{34} + a_{44}b_{44} \end{bmatrix}$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & d_{22} & a_{23} & d_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & 2d_{42} & a_{43} & 2d_{44} \end{bmatrix} \bullet \begin{bmatrix} b_{11} & b_{12} & b_{13} & b_{14} \\ b_{21} & b_{22} & b_{23} & d_{24} \\ b_{41} & b_{32} & b_{33} & b_{34} \\ b_{41} & 2b_{42} & b_{43} & 2b_{44} \end{bmatrix}$$

$$=\begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{11} + a_{12}b_{21} + a_{13}b_{11} + a_{12}b_{22} + a_{13}b_{32} + a_{14}b_{42} & \circ & a_{14}b_{14} + a_{12}b_{24} + a_{13}b_{34} + a_{14}b_{44} \\ a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31} + a_{24}b_{41} & a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32} + a_{24}b_{42} & \circ & a_{21}b_{14} + a_{22}b_{24} + a_{23}b_{34} + a_{24}b_{44} \\ a_{31}b_{11} + a_{32}b_{21} + a_{33}b_{34} + a_{34}b_{41} & a_{31}b_{12} + a_{32}b_{22} + a_{33}b_{32} + a_{34}b_{42} & \circ & a_{31}b_{14} + a_{32}b_{24} + a_{33}b_{34} + a_{34}b_{44} \\ a_{41}b_{11} + a_{42}b_{21} + a_{43}b_{31} + a_{44}b_{41} & a_{41}b_{12} + a_{42}b_{22} + a_{43}b_{32} + a_{44}b_{42} & \circ & a_{41}b_{12} + a_{42}b_{24} + a_{43}b_{34} + a_{44}b_{44} \end{bmatrix}$$

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

$$= \begin{bmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{bmatrix}$$

Counting arithmetic operations:

$$T(n) = 8T(n/2) + 4(n/2)^2 = 8T(n/2) + n^2$$

$$T(n) = \begin{cases} 1 & \text{if } n = 1 \\ 8T(n/2) + n^2 & \text{if } n > 1 \end{cases}$$

By Master Recurrence, if

$$T(n) = aT(n/b)+cn^k & a > b^k then$$

$$T(n) = \Theta(n^{\log_b a}) = \Theta(n^{\log_2 8}) = \Theta(n^3)$$

Strassen's algorithm

- Strassen's algorithm
 - Multiply 2x2 matrices using 7 instead of 8 multiplications (and lots more than 4 additions)
 - I T(n)=7 T(n/2)+cn² I 7>2² so T(n) is Θ(n^{log₂7}) which is O(n^{2.81})
 - Fastest algorithms theoretically use O(n^{2.376}) time
 - I not practical but Strassen's is practical provided calculations are exact and we stop recursion when matrix has size about 100 (maybe 10)

The algorithm

$$P_{1} = A_{12}(B_{11} + B_{21}) \qquad P_{2} = A_{21}(B_{12} + B_{22})$$

$$P_{3} = (A_{11} - A_{12})B_{11} \qquad P_{4} = (A_{22} - A_{21})B_{22}$$

$$P_{5} = (A_{22} - A_{12})(B_{21} - B_{22})$$

$$P_{6} = (A_{11} - A_{21})(B_{12} - B_{11})$$

$$P_{7} = (A_{21} - A_{12})(B_{11} + B_{22})$$

$$C_{11} = P_{1} + P_{3} \qquad C_{12} = P_{2} + P_{3} + P_{6} - P_{7}$$

$$C_{21} = P_{1} + P_{4} + P_{5} + P_{7} \qquad C_{22} = P_{2} + P_{4}$$

Another D&C Example: Fast exponentiation

- Power(a,n)
 - Input: integer **n** and number **a**
 - Output: aⁿ
- Obvious algorithm
 - **n-1** multiplications
- Observation:
 - if **n** is even, **n=2m**, then **a**ⁿ=**a**^m•**a**^m

Divide & Conquer Algorithm

```
Power(a,n)

if n=0 then

return(1)

else

x ← Power(a,[n/2])

if n is even then

return(x•x)

else

return(a•x•x)
```

Analysis

- Worst-case recurrence
 - $T(n) = T(\lfloor n/2 \rfloor) + 2$
- By master theorem
 - $T(n) = O(\log n)$ (a=1, b=2, k=0)
- More precise analysis:
 - $T(n) = \lceil \log_2 n \rceil + \# \text{ of 1's in n's binary representation}$

A Practical Application- RSA

- Instead of an want an mod N
 - $\mathbf{a}^{\mathbf{i}+\mathbf{j}} \mod \mathbf{N} = ((\mathbf{a}^{\mathbf{i}} \mod \mathbf{N}) \cdot (\mathbf{a}^{\mathbf{j}} \mod \mathbf{N})) \mod \mathbf{N}$
 - same algorithm applies with each **x**•**y** replaced by
 - ((x mod N)•(y mod N)) mod N
- In RSA cryptosystem (widely used for security)
 - need **a**ⁿ **mod N** where **a**, **n**, **N** each typically have 1024 bits
 - Power: at most 2048 multiplies of 1024 bit numbers
 - relatively easy for modern machines
 - Naive algorithm: 2¹⁰²⁴ multiplies

Another Example: Binary search for roots (bisection method)

- Given:
 - continuous function f and two points a
b with f(a)<0 and f(b)>0
- Find:
 - approximation to c s.t. f(c)=0 and a<c<b

Divide and Conquer Summary

- Powerful technique, when applicable
- Divide large problem into a few smaller problems of the same type
- Choosing subproblems of roughly equal size is usually critical
- Examples:
 - Merge sort, quicksort (sort of), polynomial multiplication, FFT, Strassen's matrix multiplication algorithm, powering, binary search, root finding by bisection, ...