CSE 417: Algorithms and Computational Complexity

6: Dynamic Programming, III Longest Increasing Subseq.

Winter 2005 W. L. Ruzzo

Three Steps to Dynamic Programming

- Formulate the answer as a recurrence relation or recursive algorithm
- Show that number of different parameters in the recursive algorithm is "small" (e.g., bounded by a low-degree polynomial)
- Specify an order of evaluation for the recurrence so that already have the partial results ready when you need them.

Longest Increasing Run

- Given a sequence of integers S₁,...,S_n find a subsequence S_i < S_{i+1} <... < S_{i+k} so that k > 0 is as large as possible.
- e.g. Given 9,5,2,5,8,7,3,1,6,9 as input,
 - possible increasing subsequence is 1,6
 - better is 2,5,8 or 1,6,9 (either or which would be a correct output to our problem)

Longest Increasing Subsequence

- Given a sequence of integers S₁,...,S_n find a subsequence S_{i1} < S_{i2} <... < S_{ik} with i₁ <... < i_k so that k is as large as possible.
- e.g. Given 9,5,2,5,8,7,3,1,6,9 as input,
 - possible increasing subsequence is 2,5,7
 - better is 2,5,6,9 or 2,5,8,9 (either or which would be a correct output to our problem; and there are others)

Find recursive algorithm

- Solve sub-problem on s₁,...,s_{n-1} and then try to extend using s_n
- Two cases:
 - S_n is not used
 - answer is the same answer as on s₁,...,s_{n-1}
 - s_n is used
 - answer is s_n preceded by the longest increasing subsequence in s_1,\ldots,s_{n-1} that ends in a number smaller than s_n

Refined recursive idea (stronger notion of subproblem)

- Suppose that we knew for each i<n the longest increasing subsequence in s₁,...,s_{n-1} ending in s_i.
 - i=n-1 is just the n-1 size sub-problem we tried before.
- Now to compute value for i=n find
 - s_n preceded by the maximum over all i<n such that $s_i < s_n$ of the longest increasing subsequence ending in s_i
- First find the best **length** rather than trying to actually compute the sequence itself.

Recurrence

- Let L[i]=length of longest increasing subsequence in s₁,...,s_n that ends in s_i.
- L[j]=1+max{L[i] : i<j and s_i<s_j} (where max of an empty set is 0)
- Length of longest increasing subsequence:
 max{L[i]: 1≤ i ≤ n}

Computing the actual sequence

- For each j, we computed
 L[j]=1+max{L[i] : i<j and s_i<s_j}
 (where max of an empty set is 0)
- Also maintain P[j] the value of the i that achieved that max
 - this will be the index of the predecessor of s_j in a longest increasing subsequence that ends in s_j
 - by following the P[j] values we can reconstruct the whole sequence in linear time.

Longest Increasing Subsequence Algorithm

- for j=1 to n do $\begin{array}{l} L[j] \leftarrow 1 \\ P[j] \leftarrow 0 \\ \text{for i=1 to j-1 do} \\ \text{if } (s_i < s_j \& L[i] + 1 > L[j]) \text{ then} \\ P[j] \leftarrow i \\ L[j] \leftarrow L[i] + 1 \\ \end{array}$ endfor endfor
- Now find j such that L[j] is largest and walk backwards through P[j] pointers to find the sequence

Example

i	1	2	3	4	5	6	7	8	9
S _i	90	50	20	80	70	30	10	60	40
l _i									
p _i									