
1

CSE 417: Algorithms and
Computational Complexity

6: Dynamic Programming, III
Longest Increasing Subseq.

Winter 2005

W. L. Ruzzo

2

Three Steps to
Dynamic Programming

• Formulate the answer as a recurrence
relation or recursive algorithm

• Show that number of different parameters in
the recursive algorithm is "small" (e.g.,
bounded by a low-degree polynomial)

• Specify an order of evaluation for the
recurrence so that already have the partial
results ready when you need them.

3

Longest Increasing Run

• Given a sequence of integers s1,...,sn find a
subsequence si< si+1<...< si+k so that k > 0 is
as large as possible.

• e.g. Given 9,5,2,5,8,7,3,1,6,9 as input,
– possible increasing subsequence is 1,6

– better is 2,5,8 or 1,6,9 (either or which would be a
correct output to our problem)

4

Longest Increasing Subsequence

• Given a sequence of integers s1,...,sn find a
subsequence si1

< si2
<...< sik

with i1<...<ik so
that k is as large as possible.

• e.g. Given 9,5,2,5,8,7,3,1,6,9 as input,
– possible increasing subsequence is 2,5,7
– better is 2,5,6,9 or 2,5,8,9 (either or which would

be a correct output to our problem; and there are
others)

5

Find recursive algorithm

• Solve sub-problem on s1,...,sn-1 and then try
to extend using sn

• Two cases:
– Sn is not used

• answer is the same answer as on s1,...,sn-1

– sn is used
• answer is sn preceded by the longest increasing

subsequence in s1,...,sn-1 that ends in a number smaller
than sn

6

Refined recursive idea
(stronger notion of subproblem)

• Suppose that we knew for each i<n the
longest increasing subsequence in s1,...,sn-1
ending in si.
– i=n-1 is just the n-1 size sub-problem we tried

before.

• Now to compute value for i=n find
– sn preceded by the maximum over all i<n such

that si<sn of the longest increasing subsequence
ending in si

• First find the best length rather than trying to
actually compute the sequence itself.

7

Recurrence

• Let L[i]=length of longest increasing
subsequence in s1,...,sn that ends in si.

• L[j]=1+max{L[i] : i<j and si<sj}
 (where max of an empty set is 0)

• Length of longest increasing subsequence:
– max{L[i]: 1≤ i ≤ n}

8

Computing the actual sequence

• For each j, we computed
L[j]=1+max{L[i] : i<j and si<sj}
 (where max of an empty set is 0)

• Also maintain P[j] the value of the i that
achieved that max
– this will be the index of the predecessor of sj in a

longest increasing subsequence that ends in sj

– by following the P[j] values we can reconstruct the
whole sequence in linear time.

9

Longest Increasing
Subsequence Algorithm

• for j=1 to n do
L[j]←1
P[j]←0
for i=1 to j-1 do

if (si<sj & L[i]+1>L[j]) then
 P[j] ←i
 L[j] ←L[i]+1
endfor

endfor
• Now find j such that L[j] is largest and walk

backwards through P[j] pointers to find the sequence

10

Example

1 2 3 4 5 6 7 8 9

90 50 20 80 70 30 10 60 40
i

si
li
pi

