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Three Steps to 
Dynamic Programming

• Formulate the answer as a recurrence
relation or recursive algorithm

• Show that number of different parameters in
the recursive algorithm is "small" (e.g.,
bounded by a low-degree polynomial)

• Specify an order of evaluation for the
recurrence so that already have the partial
results ready when you need them.
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Longest Increasing Run

• Given a sequence of integers s1,...,sn find a
subsequence si< si+1<...< si+k so that k > 0 is
as large as possible.

• e.g. Given 9,5,2,5,8,7,3,1,6,9 as input, 
– possible increasing subsequence is 1,6

– better is 2,5,8 or 1,6,9 (either or which would be a
correct output to our problem)
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Longest Increasing Subsequence

• Given a sequence of integers s1,...,sn find a
subsequence si1

< si2
<...< sik 

with i1<...<ik so
that k is as large as possible.

• e.g. Given 9,5,2,5,8,7,3,1,6,9 as input, 
– possible increasing subsequence is 2,5,7
– better is 2,5,6,9 or 2,5,8,9 (either or which would

be a correct output to our problem; and there are
others)
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Find recursive algorithm

• Solve sub-problem on s1,...,sn-1 and then try
to extend using sn

• Two cases:
– Sn is not used

• answer is the same answer as on s1,...,sn-1

– sn is used
• answer is sn preceded by the longest increasing

subsequence in s1,...,sn-1 that ends in a number smaller
than sn
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Refined recursive idea
(stronger notion of subproblem)

• Suppose that we knew for each i<n the
longest increasing subsequence in s1,...,sn-1
ending in si.
– i=n-1 is just the n-1 size sub-problem we tried

before.

• Now to compute value for i=n find
– sn preceded by the maximum over all i<n such

that si<sn of the longest increasing subsequence
ending in si

• First find the best length rather than trying to
actually compute the sequence itself.
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Recurrence

• Let L[i]=length of longest increasing
subsequence in s1,...,sn that ends in si.

• L[j]=1+max{L[i] : i<j and si<sj}             
      (where max of an empty set is 0)

• Length of longest increasing subsequence:
– max{L[i]: 1≤ i ≤ n}
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Computing the actual sequence

• For each j, we computed                 
L[j]=1+max{L[i] : i<j and si<sj} 
       (where max of an empty set is 0)

• Also maintain P[j] the value of the i that
achieved that max
– this will be the index of the predecessor of sj in a

longest increasing subsequence that ends in sj

– by following the P[j] values we can reconstruct the
whole sequence in linear time.
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Longest Increasing
Subsequence Algorithm

• for j=1 to n do   
L[j]←1
P[j]←0                        
for i=1 to j-1 do             

if (si<sj & L[i]+1>L[j]) then
                 P[j] ←i
                 L[j] ←L[i]+1
endfor

endfor
• Now find j such that L[j] is largest and walk

backwards through P[j] pointers to find the sequence



10

Example

1 2 3 4 5 6 7 8 9

90 50 20 80 70 30 10 60 40
i

si
li
pi


