CSE 417: Algorithms and Computational Complexity

6: Dynamic Programming, III Longest Increasing Subseq.

Winter 2005
W. L. Ruzzo

Longest Increasing Run

- Given a sequence of integers $\mathrm{S}_{1}, \ldots, \mathrm{~S}_{\mathrm{n}}$ find a subsequence $\mathrm{s}_{\mathrm{i}}<\mathrm{S}_{\mathrm{i}+1}<\ldots<\mathrm{S}_{\mathrm{i}+\mathrm{k}}$ so that $\mathrm{k}>0$ is as large as possible.
- e.g. Given $9,5,2,5,8,7,3,1,6,9$ as input,
- possible increasing subsequence is 1,6
- better is $2,5,8$ or $1,6,9$ (either or which would be a correct output to our problem)

Three Steps to
Dynamic Programming

- Formulate the answer as a recurrence relation or recursive algorithm
- Show that number of different parameters in the recursive algorithm is "small" (e.g. bounded by a low-degree polynomial)
- Specify an order of evaluation for the recurrence so that already have the partial results ready when you need them.

Longest Increasing Subsequence

- Given a sequence of integers $\mathrm{S}_{1}, \ldots, \mathrm{~S}_{\mathrm{n}}$ find a subsequence $\mathrm{s}_{\mathrm{i}_{1}}<\mathrm{s}_{\mathrm{i}_{2}}<\ldots<\mathrm{s}_{\mathrm{i}_{\mathrm{k}}}$ with $\mathrm{i}_{1_{1}}<\ldots<\mathrm{i}_{\mathrm{k}}$ so that k is as large as possible.
- e.g. Given $9,5,2,5,8,7,3,1,6,9$ as input,
- possible increasing subsequence is $2,5,7$
- better is $2,5,6,9$ or $2,5,8,9$ (either or which would be a correct output to our problem; and there are others)

Find recursive algorithm

- Solve sub-problem on $\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{n}-1}$ and then try to extend using s_{n}
- Two cases
- S_{n} is not used
- answer is the same answer as on $\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{n}-1}$
$-\mathrm{S}_{\mathrm{n}}$ is used
- answer is s_{n} preceded by the longest increasing subsequence in $\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{n}-1}$ that ends in a number smaller than s_{n}

Recurrence

- Let $L[i]=$ length of longest increasing subsequence in $\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{n}}$ that ends in s_{i}.
- $L[j]=1+\max \left\{L[i]: i<j\right.$ and $\left.s_{i}<s_{j}\right\}$ (where max of an empty set is 0)
- Length of longest increasing subsequence:
$-\max \{L[i]: 1 \leq i \leq n\}$

Refined recursive idea

 (stronger notion of subproblem)- Suppose that we knew for each $i<n$ the longest increasing subsequence in $\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{n}-1}$ ending in s_{i}
$-i=n-1$ is just the $n-1$ size sub-problem we tried before.
- Now to compute value for $\mathrm{i}=\mathrm{n}$ find
$-s_{n}$ preceded by the maximum over all $i<n$ such that $s_{i}<s_{n}$ of the longest increasing subsequence ending in s_{i}
- First find the best length rather than trying to actually compute the sequence itself.

Computing the actual sequence

- For each j, we computed
$L[j]=1+\max \left\{L[i]: i<j\right.$ and $\left.s_{i}<s_{j}\right\}$
(where max of an empty set is 0)
- Also maintain $P[j]$ the value of the i that achieved that max
- this will be the index of the predecessor of s_{j} in a longest increasing subsequence that ends in s_{j}
- by following the P[j] values we can reconstruct the whole sequence in linear time.

Longest Increasing

Subsequence Algorithm

- for $j=1$ to n do

L[j] <1
$P[j] \leftarrow 0$
for $\mathrm{i}=1$ to $\mathrm{j}-1$ do
if $\left(\mathrm{s}_{\mathrm{i}}<\mathrm{s}_{\mathrm{i}} \& L[\mathrm{i}]+1>\mathrm{L}[\mathrm{j}]\right)$ then
P[j] $\leftarrow i$
$L[j] \leftarrow L[i]+1$

endfor

 endfor- Now find \mathbf{j} such that L[j] is largest and walk backwards through $\mathrm{P}[\mathrm{j}]$ pointers to find the sequence

Example

i	1	2	3	4	5	6	7	8	9
S_{i}	90	50	20	80	70	30	10	60	40
I_{i}									
p_{i}									

