CSE 417: Algorithms and Computational Complexity

6: Dynamic Programming, III Longest Increasing Subseq.

> Winter 2005 W. L. Ruzzo

> > 1

3

Three Steps to Dynamic Programming

- Formulate the answer as a recurrence relation or recursive algorithm
- Show that number of different parameters in the recursive algorithm is "small" (e.g., bounded by a low-degree polynomial)
- Specify an order of evaluation for the recurrence so that already have the partial results ready when you need them.

2

4

Longest Increasing Run

- Given a sequence of integers S₁,...,S_n find a subsequence S_i < S_{i+1} <... < S_{i+k} so that k > 0 is as large as possible.
- e.g. Given 9,5,2,5,8,7,3,1,6,9 as input,
 - possible increasing subsequence is 1,6
 - better is 2,5,8 or 1,6,9 (either or which would be a correct output to our problem)

Longest Increasing Subsequence

- Given a sequence of integers S₁,...,S_n find a subsequence S_{i1} < S_{i2} <... < S_{ik} with i1 <... <i k so that k is as large as possible.
- e.g. Given 9,5,2,5,8,7,3,1,6,9 as input,
 - possible increasing subsequence is 2,5,7
 - better is 2,5,6,9 or 2,5,8,9 (either or which would be a correct output to our problem; and there are others)

Refined recursive idea (stronger notion of subproblem)

- Suppose that we knew for each i<n the longest increasing subsequence in s1,...,sn-1 ending in S_i.
 - i=n-1 is just the n-1 size sub-problem we tried before.
- Now to compute value for i=n find
 - $-s_n$ preceded by the maximum over all i<n such that si<sn of the longest increasing subsequence ending in si
- · First find the best length rather than trying to actually compute the sequence itself.

6

8

Example									
i	1	2	3	4	5	6	7	8	9
s _i	90	50	20	80	70	30	10	60	40
I,									
p _i									
									10