
1

CSE 417: Algorithms and

Computational Complexity

 5: Dynamic Programming, II
Linear Partition

Winter 2005

W. L. Ruzzo

2

Dynamic Programming
• Useful when

– Same recursive sub-problems occur repeatedly

– Can anticipate them

– Can find solution to whole problem without
knowing internal details of sub-problem solutions

• “principle of optimality”

3

List partition problem
• Given: a sequence of n positive integers

s1,...,sn and a positive integer k

• Find: a partition of the list into up to k
blocks:
s1,...,si1

|si1+1...si2
|si2+1... sik-1

 |sik-1+1...sn

so that the sum of the numbers in the
largest block is as small as possible.
i.e., find spots for up to k-1 dividers

4

Greedy approach
• Ideal size would be P =

• Greedy: walk along until what you have so
far adds up to ≥ P then insert a divider

• Problem: it may not exact (or correct)

 100 200 400 500 900 700 600 800 600 , k=3

– sum is 4800 so size must be at least 1600.
– Greedy? Best?

!
n

i

i=1

s /k

5

• Try all possible values for the position
of the last divider

• For each position of this last divider
– there are k-2 other dividers that must

divide the list of numbers prior to the last
divider as evenly as possible

• s1,...,si1
|si1+1...si2

|si2+1... sik-1
 |sik-1+1...sn

– recursive sub-problem of the same type

Recursive solution

6

Recursive idea
• Let M[n,k] the smallest cost (size of largest

block) of any partition of the n into k pieces.

• If best position for last divider lies between

the ith and i+1st then

 M[n,k]= max (M[i,k-1] ,)

• In general

M[n,k]= mini<n max (M[i,k-1] ,)

• Base case(s)?

!
n

j

j=i+1

s

!
n

j

j=i+1

s

cost of last block
max cost of 1st k-1 blocks

7

Time-saving - prefix sums
• Computing the costs of the blocks may be

expensive and involved repeated work
• Idea: Pre-compute prefix sums
• Length of block

 si+1+... + sj

is just

 p[j]-p[i]

• Cost: n additions

p[1]=s1
p[2]=s1+s2
p[3]=s1+s2+s3

...
p[n]=s1+s2+...+sn

8

Linear Partition Algorithm
Partition(S,k):
 p[0]←0; for i=1 to n do p[i] ←p[i-1]+si

for i=1 to n do M[i,1] ←p[i]
for j=1 to k do M[1,j] ← s1
for i=2 to n do

for j=2 to k do
M[i,j] ← minpos<i{max(M[pos,j-1], p[i]-p[pos])}

!

s j
j= pos+1

i

"

9

Trace-Back: Finding Solns

• Above gives value of best solution

• Q: How do you find it?

• A: work backwards from answer

10

Linear Partition Algorithm
Partition(S,k):
 p[0]←0; for i=1 to n do p[i] ←p[i-1]+si

for i=1 to n do M[i,1] ←p[i]
for j=1 to k do M[1,j] ← s1
for i=2 to n do

for j=2 to k do
M[i,j] ← minpos<i{max(M[pos,j-1], p[i]-p[pos])}
D[i,j] ← value of pos where min is achieved

11

Linear Partition Algorithm
Partition(S,k):
p[0]←0; for i=1 to n do p[i] ←p[i-1]+si

for i=1 to n do M[i,1] ←p[i]
for j=1 to k do M[1,j] ← s1
for i=2 to n do

for j=2 to k do
M[i,j]←∞
for pos=1 to i-1 do

s←max(M[pos,j-1], p[i]-p[pos])
if M[i,j]>s then

M[i,j] ←s ; D[i,j] ←pos

12

Example:

600
800
600
700
900
500
400
200
100

321

13

Example:

4800600
4200800
3400600
2800700
2100900
1200500
700400
300200

100100100100
321

14

Example:

27004800600

21004200800

21003400600

140016002800700

90012002100900

5007001200500

400400700400

200200300200

100100100100

321

15

Exercises

• Finish example

• Make up another example & try it

• Figure out from example(s) where the
dividers go

• Write an algorithm that, based on the M
& D matrices, figures out where the
dividers go

16

Goals: Skills to learn
• Recognize when dynamic programming is a

plausible approach
– E.g., recursive formulation, repeated

subproblems, Global opt depends on opt
subsolution, but not details thereof.

• Understand the logic of the correctness of
the method from the recurrence & vice versa

• Construct D.P. algorithms for new problems
you see

