CSE 417: Algorithms and Computational Complexity

5: Dynamic Programming, II Linear Partition

Winter 2005
W. L. Ruzzo

List partition problem

- Given a sequence of n positive integers s_{1}, \ldots, s_{n} and a positive integer k
- Find: a partition of the list into up to k blocks:
$\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{i}_{1}}\left|\mathrm{~s}_{\mathrm{i}_{1}+1} \ldots \mathrm{~s}_{\mathrm{i}_{2}}\right| \mathrm{s}_{\mathrm{i}_{2}+1} \ldots \mathrm{~s}_{\mathrm{i}_{\mathrm{k}-1}} \mid \mathrm{s}_{\mathrm{i}_{k-1}+1} \ldots \mathrm{~s}_{\mathrm{n}}$ so that the sum of the numbers in the largest block is as small as possible. i.e., find spots for up to k-1 dividers

Dynamic Programming

- Useful when
- Same recursive sub-problems occur repeatedly
- Can anticipate them
- Can find solution to whole problem without
knowing internal details of sub-problem solutions - "principle of optimality"
- Ideal size would be $P=\sum_{i=1}^{n} s_{i} / k$
- Greedy: walk along until what you have so far adds up to $\geq P$ then insert a divider
- Problem: it may not exact (or correct)

100200400500900700600800600 ,k=3

- sum is 4800 so size must be at least 1600 .
- Greedy? Best?

Recursive solution

- Try all possible values for the position of the last divider
- For each position of this last divider - there are k -2 other dividers that must divide the list of numbers prior to the last divider as evenly as possible
- recursive sub-problem of the same type

Time-saving - prefix sums

- Computing the costs of the blocks may be expensive and involved repeated work
- Idea: Pre-compute prefix sums

p[i]-p[i]
- Cost: n additions

Recursive idea

- Let $M[n, k]$ the smallest cost (size of largest block) of any partition of the n into k pieces.
- If best position for last divider lies between the $\mathrm{i}^{\text {th }}$ and $\mathrm{i}+1^{\text {st }}$ then \qquad L cost of last block $M[n, k]=\max \left(M[i, k-1], \sum_{j=1+1}^{n} s_{j}\right)$
- In general
$M[n, k]=\min _{i<n} \max \left(M[i, k-1], \sum_{j=1+1}^{n} s_{j}\right)$
- Base case(s)?

Linear Partition Algorithm

Partition(S,k):
$\mathrm{p}[0] \leftarrow 0$; for $\mathrm{i}=1$ to n do $\mathrm{p}[\mathrm{i}] \leftarrow \mathrm{p}[\mathrm{i}-1]+\mathrm{s}_{\mathrm{i}}$
for $\mathrm{i}=1$ to n do $\mathrm{M}[\mathrm{i}, 1] \leftarrow \mathrm{p}[\mathrm{i}]$
for $j=1$ to k do $M[1, j] \leftarrow s_{1}$
for $\mathrm{i}=2$ to n do

for $\mathrm{j}=2$ to k do
$M[i, j] \leftarrow \min _{\text {pos<i }}\{\max (M[p o s, j-1], p[i]-p[p o s])\}$

Trace-Back: Finding Solns

- Above gives value of best solution
- Q: How do you find it?
- A: work backwards from answer

Linear Partition Algorithm

Partition(S,k):
$\mathrm{p}[0] \leftarrow 0$; for $\mathrm{i}=1$ to n do $\mathrm{p}[\mathrm{i}] \leftarrow \mathrm{p}[\mathrm{i}-1]+\mathrm{s}_{\mathrm{i}}$
for $i=1$ to n do $M[i, 1] \leftarrow p[i]$
for $j=1$ to k do $M[1, j] \leftarrow s_{1}$
for $\mathrm{i}=2$ to n do
for $\mathrm{j}=2$ to k do
$M[i, j] \leftarrow \infty$
for pos=1 to $\mathrm{i}-1$ do
$\mathrm{s} \leftarrow \max (\mathrm{M}[\mathrm{pos}, \mathrm{j}-1], \mathrm{p}[\mathrm{i}]-\mathrm{p}[\mathrm{pos}])$
if $M[i, j]>s$ then
$M[i, j] \leftarrow s ; D[i, j] \leftarrow$ pos

Linear Partition Algorithm

Partition(S,k):
$\mathrm{p}[0] \leftarrow 0$; for $\mathrm{i}=1$ to n do $\mathrm{p}[\mathrm{i}] \leftarrow \mathrm{p}[\mathrm{i}-1]+\mathrm{s}_{\mathrm{i}}$
for $\mathrm{i}=1$ to n do $\mathrm{M}[\mathrm{i}, 1] \leftarrow \mathrm{p}[\mathrm{i}]$
for $j=1$ to k do $M[1, j] \leftarrow s_{1}$
for $\mathrm{i}=2$ to n do

for $\mathrm{j}=2$ to k do

$\mathrm{M}[\mathrm{i}, \mathrm{j}] \leftarrow \min _{\mathrm{pos}<\mathrm{i}}\{\max (\mathrm{M}[\mathrm{pos}, \mathrm{j}-1], \mathrm{p}[\mathrm{i}]-\mathrm{p}[\mathrm{pos}])\}$
$D[i, j] \leftarrow$ value of pos where min is achieved

Example:			
$\mathbf{1 0 0}$	1	2	
$\mathbf{2 0 0}$			3
$\mathbf{4 0 0}$			
$\mathbf{5 0 0}$			
$\mathbf{9 0 0}$			
$\mathbf{7 0 0}$			
$\mathbf{6 0 0}$			
$\mathbf{6 0 0}$			

12

Example:				
$\mathbf{1 0 0}$ 100 100 100 $\mathbf{2 0 0}$ 300 $\mathbf{2}$ $\mathbf{4 0 0}$ 700 $\mathbf{5 0 0}$ 1200 $\mathbf{9 0 0}$ 2100 $\mathbf{7 0 0}$ 2800 $\mathbf{6 0 0}$ 3400 $\mathbf{8 0 0}$ 4200 $\mathbf{6 0 0}$ 4800				

Exercises

- Finish example
- Make up another example \& try it
- Figure out from example(s) where the dividers go
- Write an algorithm that, based on the M \& D matrices, figures out where the dividers go

Example:				
	$\mathbf{1}$			
$\mathbf{1 0 0}$	100	100	100	
$\mathbf{2 0 0}$	300	200	200	
$\mathbf{4 0 0}$	700	400	400	
$\mathbf{5 0 0}$	1200	700	500	
$\mathbf{9 0 0}$	2100	1200	900	
$\mathbf{7 0 0}$	2800	1600	1400	
$\mathbf{6 0 0}$	3400	2100		
$\mathbf{8 0 0}$	4200	2100		
$\mathbf{6 0 0}$	4800	2700		

Goals: Skills to learn

- Recognize when dynamic programming is a plausible approach
- E.g., recursive formulation, repeated subproblems, Global opt depends on opt subsolution, but not details thereof.
- Understand the logic of the correctness of the method from the recurrence \& vice versa
- Construct D.P. algorithms for new problems you see

