CSE 417: Algorithms and
Computational Complexity

5: Dynamic Programming, Il
Linear Partition

Winter 2005
W. L. Ruzzo

Dynamic Programming

+ Useful when
— Same recursive sub-problems occur repeatedly
— Can anticipate them

— Can find solution to whole problem without
knowing internal details of sub-problem solutions
« “principle of optimality”

List partition problem

* Given a sequence of n positive integers
S4,...,S, and a positive integer k

 Find: a partition of the list into up to k
blocks:
S1s--5Si,|Si+1---81,ISie1-- Siy, ISj_+1---Sn
so that the sum of the numbers in the
largest block is as small as possible.
i.e., find spots for up to k-1 dividers 3

Greedy approach

n

« Ideal size would be P = Esi/k

* Greedy: walk along until what you have so
far adds up to = P then insert a divider

* Problem: it may not exact (or correct)
100 200 400 500 900 700 600 800 600, k=3

— sum is 4800 so size must be at least 1600.
— Greedy? Best?

Recursive solution

Try all possible values for the position
of the /ast divider

For each position of this last divider

— there are k-2 other dividers that must
divide the list of numbers prior to the last
divider as evenly as possible

* S4y0es8, [Si 41481 |Siyu1- S, |8

— recursive sub-problem of the same type

Recursive idea

* Let M[n,k] the smallest cost (size of largest
block) of any partition of the n into k pieces.

+ If best position for last divider lies between
max cost of 1st k-1 blocks
cost of last block
nx

Mn,k]= max (M[i,k-1], > ;)

=i+

the ith and i+1st then
e

* In general
M[n,k]= min,_, max (M[i,k-1] ,Esj)
« Base case(s)? o

Time-saving - prefix sums

Computing the costs of the blocks may be
expensive and involved repeated work

Idea: Pre-compute prefix sums ———

Length of block <
e plTl=s,
A pl2]=s;+s;

is just

P[3]=S;+S,+5;
pll-pli]

Cost: n additions

p[n]=s;+S,+...+S,
7

Linear Partition Algorithm

Partition(S,k):
p[0]<-0; for i=1 to n do pl[i] <—pl[i-1]+s;
for i=1 to n do M[i,1] <pli]
for j=1to k do M[1,j] < s; E S
fori=2to ndo j=pos+1J
for j=2 to k do "
MIi,j] <= minge{max(M[pos,j-1], pli]-p[pos])}

Trace-Back: Finding Solns

» Above gives value of best solution
* Q: How do you find it?

* A: work backwards from answer

Linear Partition Algorithm

Partition(S,k):

p[0]<-0; for i=1 to n do pl[i] <pl[i-1]+s;

for i=1 to n do M[i,1] <—p]i]

for j=1to k do M[1,j] < s

for i=2 to n do

for j=2 to k do

M[i,j] <= min,,.{max(M[pos.j-1], p[i]-p[pos])}
Dli,j] < value of pos where min is achieved

Linear Partition Algorithm

Partition(S,k):
p[0]<-0; for i=1 to n do p[i] «<p[i-1]+s;
for i=1 to n do M[i,1] <—p]i]
for j=1to k do M[1,j] < s,
fori=2to ndo
for j=2 to k do
M[i,j]<—c°
for pos=1to i-1 do
s<-max(M[pos,j-1], p[i]-p[pos])
if M[i,j]>s then
M[i,j] <s ; D[i,j] <pos

Example:

1 2 3

100

200

400

500

900

700

600

800

600

Example:

Example:

1

100

100

100

100

200

300

400

700

500

1200

900

2100

700

2800

600

3400

800

4200

600

4800

1
100100 100 100
200300 200 200
400|700 400 400
5001200 700 500
900]2100 1200 900
70012800 1600 1400
600 (3400 2100
800 (4200 2100
600 (4800 2700 14

Exercises

Finish example

Make up another example & try it
Figure out from example(s) where the
dividers go

Write an algorithm that, based on the M

& D matrices, figures out where the
dividers go

Goals: Skills to learn

* Recognize when dynamic programming is a
plausible approach

— E.g., recursive formulation, repeated
subproblems, Global opt depends on opt
subsolution, but not details thereof.

» Understand the logic of the correctness of
the method from the recurrence & vice versa

+ Construct D.P. algorithms for new problems
you see

