
1

CSE 417: Algorithms and
Computational Complexity

4: Dynamic Programming, I
Fibonacci

Winter 2005

Lecture 4

W. L. Ruzzo

2

Some Algorithm Design
Techniques, I

• General overall idea
– Reduce solving a problem to a smaller problem or

problems of the same type

• Greedy algorithms
– Used when one needs to build something a piece

at a time
– Repeatedly make the greedy choice - the one

that looks the best right away
– e.g. closest pair in TSP search

– Usually fast if they work (but often don't)

3

Some Algorithm Design
Techniques, II

• Divide & Conquer
– Reduce problem to one or more sub-problems of

the same type

– Typically, each sub-problem is at most a constant
fraction of the size of the original problem

• e.g. Mergesort, Binary Search, Strassen’s Algorithm,
Quicksort (kind of)

4

Some Algorithm Design
Techniques, III

• Dynamic Programming
– Give a solution of a problem using smaller

sub-problems, e.g. a recursive solution

– Useful when the same sub-problems show
up again and again in the solution

5

A simple case:
Computing Fibonacci Numbers

• Recall Fn=Fn-1+Fn-2 and F0=0, F1=1

• Recursive algorithm:
– Fibo(n)

if n=0 then return(0)
else if n=1 then return(1)
else return(Fibo(n-1)+Fibo(n-2))

6

Call tree - start
F (6)

F (5) F (4)

F (3)

F (4)

F (2)

F (2)

F (3)

F (1) F (0)

1 0

F (1)

7

Full call tree
F (6)

F (2)

F (5) F (4)

F (3)

F (4)

F (2)

F (2)

F (3)F (3)

F (1) F (0)

1 0

F (0)

01

F (1)

F (1) F (0)

1 0F (1)

F (2) F (1)

1
F (0)

1 0

F (2) F (1)

1
F (0)

1 0

F (1)

1

F (1)

8

Memo-ization (Caching)

• Remember all values from previous
recursive calls

• Before recursive call, test to see if
value has already been computed

• Dynamic Programming
– Convert memo-ized algorithm from a

recursive one to an iterative one

9

Fibonacci - Dynamic
Programming Version

• FiboDP(n):
F[0]←0
F[1] ←1
for i=2 to n do
 F[i]=F[i-1]+F[i-2]
endfor
return(F[n])

10

Dynamic Programming

• Useful when
– same recursive sub-problems occur repeatedly
– Can anticipate the parameters of these recursive

calls
– The solution to whole problem can be figured out

with knowing the internal details of how the sub-
problems are solved

• principle of optimality

