CSE 417: Algorithms and Computational Complexity 4: Dynamic Programming, I Fibonacci

Winter 2005 Lecture 4 W. L. Ruzzo

Some Algorithm Design Techniques, I

- General overall idea
 - Reduce solving a problem to a smaller problem or problems of the same type
- Greedy algorithms
 - Used when one needs to build something a piece at a time
 - Repeatedly make the greedy choice the one that looks the best right away

e.g. closest pair in TSP search

Usually fast if they work (but often don't)

Some Algorithm Design Techniques, II

- Divide & Conquer
 - Reduce problem to one or more sub-problems of the same type
 - Typically, each sub-problem is at most a constant fraction of the size of the original problem
 - e.g. Mergesort, Binary Search, Strassen's Algorithm, Quicksort (kind of)

Some Algorithm Design Techniques, III

- Dynamic Programming
 - Give a solution of a problem using smaller sub-problems, e.g. a recursive solution
 - Useful when the same sub-problems show up again and again in the solution

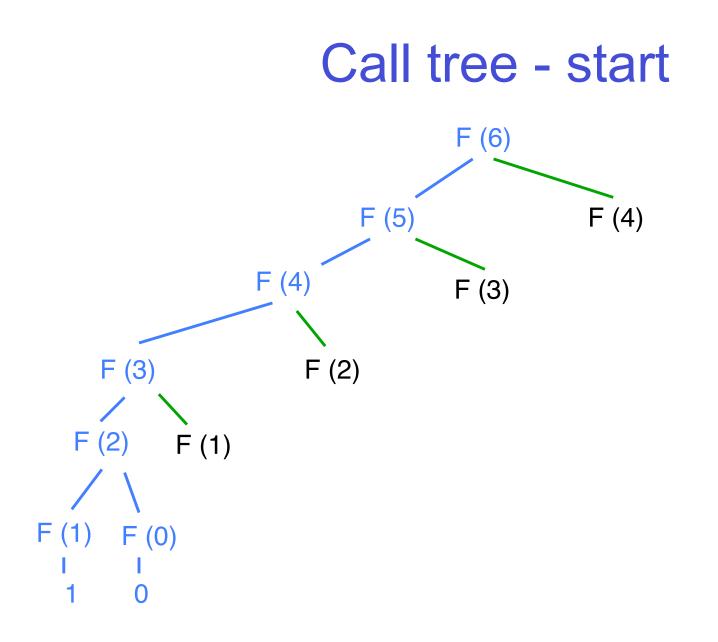
A simple case: Computing Fibonacci Numbers

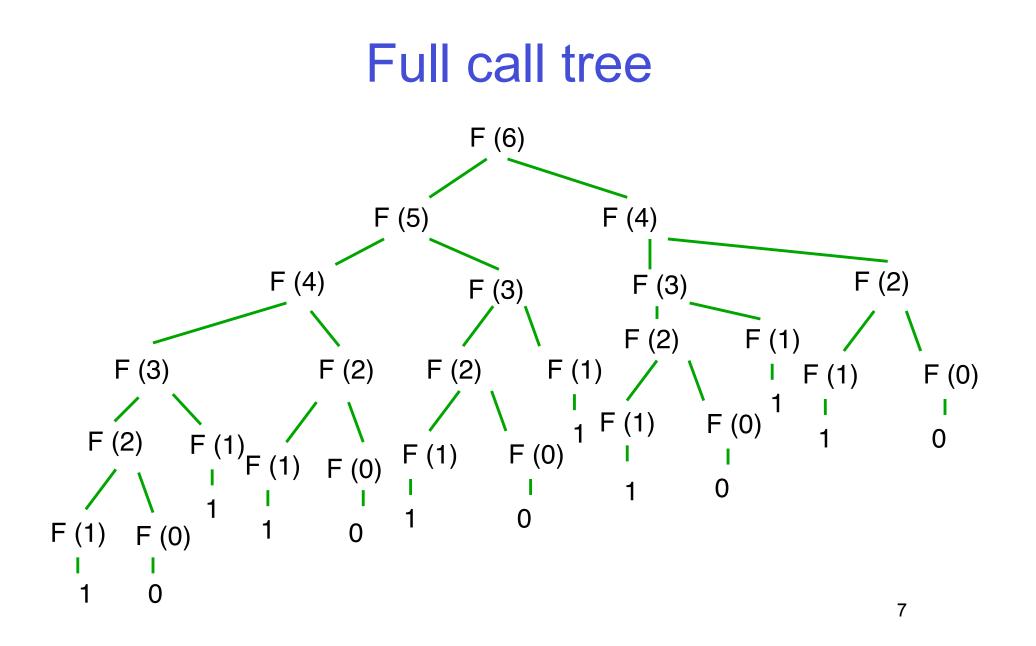
- Recall $F_n = F_{n-1} + F_{n-2}$ and $F_0 = 0$, $F_1 = 1$
- Recursive algorithm:
 - Fibo(n)

if n=0 then return(0)

else if n=1 then return(1)

else return(Fibo(n-1)+Fibo(n-2))





Memo-ization (Caching)

- Remember all values from previous recursive calls
- Before recursive call, test to see if value has already been computed
- Dynamic Programming
 - Convert memo-ized algorithm from a recursive one to an iterative one

Fibonacci - Dynamic Programming Version

FiboDP(n):

 F[0] ← 0
 F[1] ← 1
 for i=2 to n do
 F[i]=F[i-1]+F[i-2]
 endfor
 return(F[n])

Dynamic Programming

- Useful when
 - same recursive sub-problems occur repeatedly
 - Can anticipate the parameters of these recursive calls
 - The solution to whole problem can be figured out with knowing the internal details of how the subproblems are solved
 - principle of optimality