CSE 417: Algorithms and
Computational Complexity

4: Dynamic Programming, |
Fibonacci

Winter 2005
Lecture 4
W. L. Ruzzo



Some Algorithm Design
Techniques, |

* General overall idea
— Reduce solving a problem to a smaller problem or
problems of the same type
* Greedy algorithms

— Used when one needs to build something a piece
at a time

— Repeatedly make the greedy choice - the one
that looks the best right away

— e.g. closest pair in TSP search

— Usually fast if they work (but often don't)



Some Algorithm Design
Techniques, |

* Divide & Conquer

— Reduce problem to one or more sub-problems of
the same type

— Typically, each sub-problem is at most a constant

fraction of the size of the original problem

» e.g. Mergesort, Binary Search, Strassen’s Algorithm,
Quicksort (kind of)



Some Algorithm Design
Techniques, ll|

* Dynamic Programming

— Give a solution of a problem using smaller
sub-problems, e.g. a recursive solution

— Useful when the same sub-problems show
up again and again in the solution



A simple case:
Computing Fibonacci Numbers

* Recall F =F_,+F_, and F,=0, F,=1

* Recursive algorithm:

— Fibo(n)
if n=0 then return(0)

else if n=1 then return(1)
else return(Fibo(n-1)+Fibo(n-2))



Call tree - start

/\

/ \
(3)



Full call tree

/Qlu\l@ —_

L A
\ll_l_l
NI

P S

—~~ - O

) LL



Memo-ization (Caching)

« Remember all values from previous
recursive calls

 Before recursive call, test to see if
value has already been computed

* Dynamic Programming

— Convert memo-ized algorithm from a
recursive one to an iterative one



Fibonacci - Dynamic
Programming Version

* FiboDP(n):

F[O]<0

F[1] <1

fori=2 ton do
Fli]=F[i-1]+F[i-2]

endfor

return(F[n])




Dynamic Programming

» Useful when
— same recursive sub-problems occur repeatedly

— Can anticipate the parameters of these recursive
calls

— The solution to whole problem can be figured out
with knowing the internal details of how the sub-
problems are solved

* principle of optimality

10



