CSE 417: Algorithms and Computational Complexity

4: Dynamic Programming, I Fibonacci

Winter 2005 Lecture 4 W. L. Ruzzo

1

Some Algorithm Design Techniques, I

- · General overall idea
 - Reduce solving a problem to a smaller problem or problems of the same type
- · Greedy algorithms
 - Used when one needs to build something a piece at a time
 - Repeatedly make the greedy choice the one that looks the best right away
 - e.g. closest pair in TSP search
 - Usually fast if they work (but often don't)

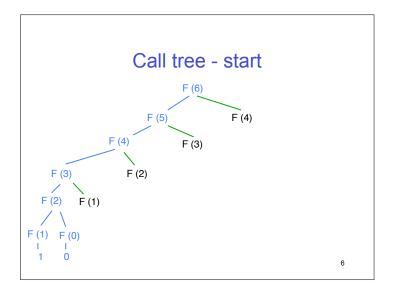
2

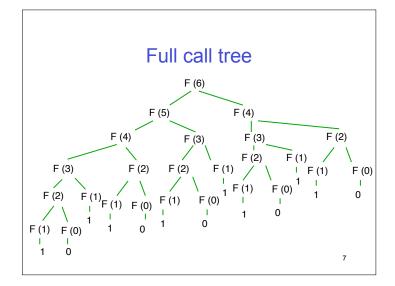
Some Algorithm Design Techniques, II

- Divide & Conquer
 - Reduce problem to one or more sub-problems of the same type
 - Typically, each sub-problem is at most a constant fraction of the size of the original problem
 - e.g. Mergesort, Binary Search, Strassen's Algorithm, Quicksort (kind of)

3

Some Algorithm Design Techniques, III


- Dynamic Programming
 - Give a solution of a problem using smaller sub-problems, e.g. a recursive solution
 - Useful when the same sub-problems show up again and again in the solution


4

A simple case: Computing Fibonacci Numbers

- Recall $F_n = F_{n-1} + F_{n-2}$ and $F_0 = 0$, $F_1 = 1$
- Recursive algorithm:
 - Fibo(n)
 if n=0 then return(0)
 else if n=1 then return(1)
 else return(Fibo(n-1)+Fibo(n-2))

5

Memo-ization (Caching)

- Remember all values from previous recursive calls
- Before recursive call, test to see if value has already been computed
- Dynamic Programming
 - Convert memo-ized algorithm from a recursive one to an iterative one

8

Fibonacci - Dynamic Programming Version

9

```
   FiboDP(n):
       F[0]←0
       F[1] ←1
       for i=2 to n do
           F[i]=F[i-1]+F[i-2]
       endfor
       return(F[n])
```

Dynamic Programming

- Useful when
 - same recursive sub-problems occur repeatedly
 - Can anticipate the parameters of these recursive calls
 - The solution to whole problem can be figured out with knowing the internal details of how the subproblems are solved
 - · principle of optimality

10