CSE 417: Algorithms and
Computational Complexity

3: Complexity

Winter 2005
Larry Ruzzo

Efficiency

* Our correct TSP algorithm was incredibly slow

« Basically slow no matter what computer you
have

 We would like a general theory of “efficiency”
that is
— Simple
— Relatively independent of changing technology

— But still useful for prediction - “theoretically bad”
algorithms should be bad in practice and vice versa

(usually)

Measuring efficiency:
The RAM model

« RAM = Random Access Machine

* Time = # of instructions executed in an
ideal assembly language

— each simple operation (+,*,-,=,if,call) takes
one time step

— each memory access takes one time step
* No bound on the memory

We left out things but...

« Things we've dropped

— memory hierarchy

« disk, caches, registers have many orders of magnitude
differences in access time

— not all instructions take the same time in practice

« However,

— the RAM model is useful for designing algorithms
and measuring their efficiency

— one can usually tune implementations so that the
hierarchy etc. is not a huge factor

s
[3
[)

Complexity
analysis /

* Problem size n

— Worst-case complexity: max # steps
algorithm takes on any input of size n

— Best-case complexity: min # steps
algorithm takes on any input of size n

— Average-case complexity: avg # steps
algorithm takes on inputs of size n

Pros and cons:

« Best-case
— unrealistic overselling
— can “cheat”: tune algorithm for one easy input

« Worst-case
— a fast algorithm has a comforting guarantee
— no way to cheat by hard-coding special cases
— maybe too pessimistic

* Average-case

— over what probability distribution?

— different people may have different average
problems

Why Worst-Case Analysis?

Appropriate for time-critical
applications, e.g. avionics

Unlike Average-Case, no debate about
what the right definition is

Analysis often easier

Result is often representative of
"typical” problem instances

Of course there are exceptions...

General Goals

« Characterize growth rate of run time as a
function of problem size, up to a constant

factor

* Why not try to be more precise?

— Technological variations (computer, compiler, OS,
...) easily 10x or more

— Being more precise is a ton of work

— A key question is “scale up”: if | can afford to do it
today, how much longer will it take when my
business problems are twice as large? (E.qg.
today: cn?, next year: ¢(2n) 2 = 4c¢cn?: 4 x longer.)

Complexity

* The complexity of an algorithm associates a
number T(n), the best/worst/average-case

time the algorithm takes, with each problem
size n.

* Mathematically,
—T: N*—=R?
—that is T is a function that maps positive

integers giving problem size to positive
real numbers giving number of steps.

Time

Complexity

Problem size

10

Time

Complexity

Problem size

11

O-notation etc

« Given two functions f and g:N—R

— f(n) is O(g(n)) iff there is a constant ¢>0 so
that ¢ g(n) is eventually always = f(n)

— f(n) is Q(g(n)) iff there is a constant ¢>0 so
that ¢ g(n) is eventually always < f(n)

— f(n) is ©(g(n)) iff there is are constants c,

and ¢,>0 so that eventually
always c,g(n) < f(n) < c,g(n)

12

Examples

¢ 10n%-16n+100 is O(n?) also O(n3)
—10n2-16n+100 < 11n?foralln = 10

¢ 10n%-16n+100 is Q(n?) also Q(n)
— 10n2-16n+100 = 9n2 for all n =16
— Therefore also 10n2-16n+100 is ©(n?)

* 10n%-16n+100 is not O(n) also not Q(n3)

13

“One-Way Equalities”

2+2is4” vs 2+2=4 vs 4=2+2

“Every dog is a mammal” vs
“Every mammal is a dog”

2n2+5nisO(n3) vs

2n2+5n=0(n3%) vs

O(n3)=2n2+5n & [FALSE
OK to put big-O in R.H.S. of equality, but not

left; better to avoid both.

14

Domination

« f(n) is o(g(n)) iff lim__ . f(n)/g(n)=0

— that is g(n) dominates f(n)
* If o =B then n®is O(n#)
* If o <P then n®is o(n#)

* Note: if f(n) is ®(g(n)) then it cannot be
o(g(n))

15

Working with O-Q2-0 notation

» Claim: For any a, b>1 log_n is ©(log,n)

— log_n=log_b log,n so letting c=log,b we get that
clog,n =<log,n =clog,n

« Claim: For any a, and b>0, (n+a)° is ©(n®)
— (n+a)® < (2n)* for n=|q|
= 2Pnb = cnb for c=2P so (n+a)® is O(n®)
— (n+a)P =(n/2)b for n= 2|a| (even if a <0)
=2-bnb =¢’n for ¢’=2° so (n+a)° is (nP)

16

Working with little-o

* n° = 0o(n3) [Use algebral]:

2
. n
Iim —

n —°c0

=lim,__—=0
n n

* n° = 0(e") [Use L'Hospital’s rule 3 times:

3 2
n . 3n . on . 6
=lim —— =]mm — =]im — =0
n n —oo n n —oo n
e e e e

17

Big-Theta, etc. not always “nice”

4 2 3
n°, neven

1) = < o
Jn) 'n, nodd

f(n) = ©(n3) for any a. \

Fortunately, such
nasty cases are rare

18

A Possible Misunderstanding?

. We have looked at Insertion Sort:

— type of complexity analysis 2(n®) (worst case)
« worst-, best-, average-case O(n) (b ost case)
— types of function bounds
-+ 0,Q,0

* These two considerations are independent of
each other

— one can do any type of function bound with any
type of complexity analysis

19

