

3: Complexity

Winter 2005 Larry Ruzzo

Efficiency

- Our correct TSP algorithm was incredibly slow
- Basically slow no matter what computer you have
- We would like a general theory of "efficiency" that is
 - Simple
 - Relatively independent of changing technology
 - But still useful for prediction "theoretically bad" algorithms should be bad in practice and vice versa (usually)

2

4

Measuring efficiency: The RAM model

- RAM = Random Access Machine
- Time ≈ # of instructions executed in an ideal assembly language
 - each simple operation (+,*,-,=,if,call) takes one time step
 - each memory access takes one time step
- No bound on the memory

3

1

We left out things but...

- Things we've dropped
 - memory hierarchy
 - disk, caches, registers have many orders of magnitude differences in access time
 - not all instructions take the same time in practice
- However,
 - the RAM model is useful for designing algorithms and measuring their efficiency
 - one can usually tune implementations so that the hierarchy etc. is not a huge factor

Complexity analysis

- Problem size n
 - Worst-case complexity: max # steps algorithm takes on any input of size n
 - Best-case complexity: min # steps algorithm takes on any input of size n
 - Average-case complexity: avg # steps algorithm takes on inputs of size n

5

Pros and cons:

- Best-case
 - unrealistic overselling
 - can "cheat": tune algorithm for one easy input
- Worst-case
 - a fast algorithm has a comforting guarantee
 - no way to cheat by hard-coding special cases
 - maybe too pessimistic
- Average-case
 - over what probability distribution?
 - different people may have different average problems

6

Why Worst-Case Analysis?

- Appropriate for time-critical applications, e.g. avionics
- Unlike Average-Case, no debate about what the right definition is
- · Analysis often easier
- Result is often representative of "typical" problem instances
- Of course there are exceptions...

7

General Goals

- Characterize *growth rate* of run time as a function of problem size, up to a *constant factor*
- Why not try to be more precise?
 - Technological variations (computer, compiler, OS, ...) easily 10x or more
 - Being more precise is a ton of work
 - A key question is "scale up": if I can afford to do it today, how much longer will it take when my business problems are twice as large? (E.g. today: cn², next year: c(2n)² = 4cn²: 4 x longer.)

real numbers giving number of steps.

