CSE 417: Algorithms and Computational Complexity
 3: Complexity

Winter 2005
Larry Ruzzo

Efficiency

- Our correct TSP algorithm was incredibly slow
- Basically slow no matter what computer you have
- We would like a general theory of "efficiency" that is
- Simple
- Relatively independent of changing technology
- But still useful for prediction - "theoretically bad algorithms should be bad in practice and vice versa (usually)

We left out things but...

- Things we've dropped
- memory hierarchy
disk, caches, registers have many orders of magnitude differences in access time
- not all instructions take the same time in practice
- However,
- the RAM model is useful for designing algorithms and measuring their efficiency
- one can usually tune implementations so that the hierarchy etc. is not a huge factor
- No bound on the memory

Complexity analysis

- Problem size n
- Worst-case complexity: max \# steps algorithm takes on any input of size n
- Best-case complexity: min \# steps algorithm takes on any input of size n
- Average-case complexity: avg \# steps algorithm takes on inputs of size n

Pros and cons:

- Best-case
- unrealistic overselling
- can "cheat": tune algorithm for one easy input
- Worst-case
- a fast algorithm has a comforting guarantee - no way to cheat by hard-coding special cases - maybe too pessimistic
- Average-case
- over what probability distribution?
- different people may have different average problems

Why Worst-Case Analysis?

- Appropriate for time-critical applications, e.g. avionics
- Unlike Average-Case, no debate about what the right definition is
- Analysis often easier
- Result is often representative of "typical" problem instances
- Of course there are exceptions...

General Goals

- Characterize growth rate of run time as a function of problem size, up to a constant factor
-Why not try to be more precise?
- Technological variations (computer, compiler, OS, ..) easily $10 x$ or more
- Being more precise is a ton of work
- A key question is "scale up": if I can afford to do it today, how much longer will it take when my business problems are twice as large? (E.g. today: cn^{2}, next year: $\mathrm{c}(2 \mathrm{n})^{2}=4 \mathrm{cn}^{2}: 4 \times$ longer.)

Complexity

- The complexity of an algorithm associates a number T(n), the best/worst/average-case time the algorithm takes, with each problem size n .
- Mathematically,
$-\mathrm{T}: \mathrm{N}^{+} \rightarrow \mathrm{R}^{+}$
- that is T is a function that maps positive integers giving problem size to positive real numbers giving number of steps.

Complexity

Problem size

O-notation etc

- Given two functions f and $g: N \rightarrow R$
$-\mathbf{f}(\mathbf{n})$ is $\mathbf{O}(\mathbf{g}(\mathbf{n}))$ iff there is a constant $\mathbf{c}>0$ so that $\mathbf{c} \mathbf{g}(\mathbf{n})$ is eventually always $\geq \mathbf{f}(\mathbf{n})$
$-\mathbf{f}(\mathbf{n})$ is $\Omega(\mathbf{g}(\mathbf{n}))$ iff there is a constant $\mathbf{c}>0$ so that $\mathbf{c} \mathbf{g}(\mathbf{n})$ is eventually always $\leq f(\mathbf{n})$
$-\mathbf{f}(\mathbf{n})$ is $\Theta(\mathbf{g}(\mathbf{n}))$ iff there is are constants \mathbf{c}_{1} and $\mathbf{c}_{2}>0$ so that eventually always $c_{1} g(n) \leq f(n) \leq c_{2} g(n)$

Examples

- $\mathbf{1 0} \mathbf{n}^{2}-16 n+100$ is $\mathbf{O}\left(\mathbf{n}^{2}\right)$ also $\mathrm{O}\left(\mathrm{n}^{3}\right)$
$-10 n^{2}-16 n+100 \leq 11 n^{2}$ for all $n \geq 10$
- $10 \mathbf{n}^{2} \mathbf{- 1 6 n + 1 0 0}$ is $\Omega\left(\mathbf{n}^{2}\right)$ also $\Omega(n)$
$-10 n^{2}-16 n+100 \geq 9 n^{2}$ for all $n \geq 16$
- Therefore also $\mathbf{1 0 n ^ { 2 }} \mathbf{- 1 6 n + 1 0 0}$ is $\boldsymbol{\Theta}\left(\mathbf{n}^{2}\right)$
- $10 n^{2}-16 n+100$ is not $O(n)$ also not $\Omega\left(n^{3}\right)$

"One-Way Equalities"

- " $2+2$ is 4 " vs $2+2=4$ vs $4=2+2$
- "Every dog is a mammal" vs
"Every mammal is a dog"
- $2 \mathrm{n}^{2}+5 \mathrm{n}$ is $\mathrm{O}\left(\mathrm{n}^{3}\right)$ $2 n^{2}+5 n=O\left(n^{3}\right)$ $O\left(n^{3}\right)=2 n^{2}+5 n$

- OK to put big-O in R.H.S. of equality, but not left; better to avoid both

Domination

- $\mathbf{f}(\mathbf{n})$ is $o\left(\mathbf{g}(\mathbf{n})\right.$) iff $\lim _{\mathrm{n} \rightarrow \infty} \mathbf{f}(\mathbf{n}) / \mathbf{g}(\mathbf{n})=\mathbf{0}$ - that is $\mathbf{g}(\mathbf{n})$ dominates $f(\mathbf{n})$
- If $\alpha \leq \beta$ then \mathbf{n}^{α} is $\mathbf{O}\left(\mathbf{n}^{\beta}\right)$
- If $\alpha<\beta$ then \mathbf{n}^{α} is $\mathbf{O}\left(\mathbf{n}^{\beta}\right)$
- Note: if $f(\mathbf{n})$ is $\Theta(\mathbf{g}(\mathbf{n}))$ then it cannot be O(g(n))

Working with $\mathrm{O}-\Omega-\Theta$ notation

- Claim: For any $a, b>1 \quad \log _{a} n$ is $\Theta\left(\log _{b} n\right)$
$-\log _{a} n=\log _{a} b \log _{b} n$ so letting $c=\log _{a} b$ we get that $\operatorname{clog}_{b} n \leq \log _{a} n \leq C \log _{b} n$
- Claim: For any a, and $b>0,(n+a)^{b}$ is $\Theta\left(n^{b}\right)$
$-(n+a)^{b} \leq(2 n)^{b} \quad$ for $n \geq|a|$ $=2^{b} n^{b}=c n^{b}$ for $c=2^{b}$ so $(n+a)^{b}$ is $O\left(n^{b}\right)$
$-(n+a)^{b} \geq(n / 2)^{b}$ for $n \geq 2|a|$ (even if $\left.a<0\right)$
$=2^{-b} n^{b}=c^{\prime} n$ for $c^{\prime}=2^{-b}$ so $(n+a)^{b}$ is $\Omega\left(n^{b}\right)$

Working with little-o

- $\mathrm{n}^{2}=\mathrm{o}\left(\mathrm{n}^{3}\right)$ [Use algebra]:

$$
\lim _{\mathrm{n} \rightarrow \infty} \frac{n^{2}}{n^{3}}=\lim _{\mathrm{n} \rightarrow \infty} \frac{1}{n}=0
$$

- $\mathrm{n}^{3}=\mathrm{o}\left(\mathrm{e}^{\mathrm{n}}\right)$ [Use L'Hospital's rule 3 times]:

$$
\lim _{\mathrm{n} \rightarrow \infty} \frac{n^{3}}{e^{n}}=\lim _{\mathrm{n} \rightarrow \infty} \frac{3 n^{2}}{e^{n}}=\lim _{\mathrm{n} \rightarrow \infty} \frac{6 n}{e^{n}}=\lim _{\mathrm{n} \rightarrow \infty} \frac{6}{e^{n}}=0
$$

A Possible Misunderstanding?

- We have looked at
- type of complexity analysis - worst-, best-, average-case
- types of function bounds
- $0, \Omega, \Theta$
- These two considerations are independent of each other
- one can do any type of function bound with any type of complexity analysis

Insertion Sort:

$\Omega\left(\mathrm{n}^{2}\right)$ (worst case)
$\mathrm{O}(\mathrm{n})$ (best case)

Big-Theta, etc. not always "nice"
$f(n)=\left\{\begin{array}{cc}n^{2}, & n \text { even } \\ n, & n \text { odd }\end{array}\right\}$
$f(n) \neq \Theta\left(n^{a}\right)$ for any a.
Fortunately, such nasty cases are rare
再

