CSE 417: Algorithms and
Computational Complexity

3: Complexity

Winter 2005
Larry Ruzzo

Efficiency

* Our correct TSP algorithm was incredibly slow

» Basically slow no matter what computer you
have

* We would like a general theory of “efficiency”
that is
— Simple
— Relatively independent of changing technology

— But still useful for prediction - “theoretically bad”
algorithms should be bad in practice and vice versa
(usually)

Measuring efficiency:
The RAM model

* RAM = Random Access Machine

» Time = # of instructions executed in an
ideal assembly language

— each simple operation (+,*,-,=,if,call) takes
one time step

— each memory access takes one time step
* No bound on the memory

We left out things but...

* Things we’ve dropped
— memory hierarchy

« disk, caches, registers have many orders of magnitude
differences in access time

— not all instructions take the same time in practice
* However,

— the RAM model is useful for designing algorithms
and measuring their efficiency

— one can usually tune implementations so that the
hierarchy etc. is not a huge factor

e 9 00

Complexity .
analysis /

* Problem size n

— Worst-case complexity: max # steps
algorithm takes on any input of size n

— Best-case complexity: min # steps
algorithm takes on any input of size n

— Average-case complexity: avg # steps
algorithm takes on inputs of size n

Pros and cons:

» Best-case
— unrealistic overselling
— can “cheat”: tune algorithm for one easy input
* Worst-case
— a fast algorithm has a comforting guarantee
— no way to cheat by hard-coding special cases
— maybe too pessimistic
* Average-case
— over what probability distribution?

— different people may have different average
problems

Why Worst-Case Analysis?

 Appropriate for time-critical
applications, e.g. avionics

» Unlike Average-Case, no debate about
what the right definition is

» Analysis often easier

» Result is often representative of
"typical" problem instances

» Of course there are exceptions...

General Goals

+ Characterize growth rate of run time as a
function of problem size, up to a constant
factor

* Why not try to be more precise?

— Technological variations (computer, compiler, OS,
...) easily 10x or more

— Being more precise is a ton of work

— A key question is “scale up”: if | can afford to do it
today, how much longer will it take when my
business problems are twice as large? (E.g.
today: cn2, next year: ¢(2n) 2 = 4cn2: 4 x longer.)

8

Complexity

* The complexity of an algorithm associates a
number T(n), the best/worst/average-case
time the algorithm takes, with each problem
size n.

« Mathematically,
—T:N*—=R*
—that is T is a function that maps positive
integers giving problem size to positive
real numbers giving number of steps.

Complexity

T(n)

Time

Problem size

Time

Complexity

Problem size

O-notation etc

+ Given two functions f and g:N—R

— f(n) is O(g(n)) iff there is a constant ¢>0 so
that c g(n) is eventually always = f(n)

— f(n) is Q(g(n)) iff there is a constant ¢>0 so
that ¢ g(n) is eventually always < f(n)

— f(n) is ®(g(n)) iff there is are constants c,
and ¢,>0 so that eventually
always c¢,g(n) = f(n) < c,g(n)

- 10n2-16n+100 is O(n2)

Examples

also O(n?3)
—10n2-16n+100 < 11n2 foralln = 10

* 10n2-16n+100 is Q(n?) also Q(n)

—10n2-16n+100 = 9n2 for all n =16
— Therefore also 10n2-16n+100 is ©(n2)

10n2-16n+100 is not O(n) also not Q(n3)

“One-Way Equalities”

+ 2+2is4” vs 2+2=4 vs 4=2+2

+ “Every dog is a mammal” vs
“‘Every mammal is a dog”

* 2n2+5nisO(n3) vs
2n2+5n=0(n%) vs
O(n®)=2n2+5n & FALSE

+ OKto put big-O in R.H.S. of equality, but not
left; better to avoid both.

Domination

f(n) is o(g(n)) iff lim,_, f(n)/g(n)=0

— that is g(n) dominates f(n)
If a < p then n® is O(nP)
If a < p then ne is o(nf)

Note: if f(n) is ®(g(n)) then it cannot be
o(g(n))

Working with O-Q-0 notation

» Claim: Forany a, b>1 log,n is ©(log,n)

— log,n=log,b log,n so letting c=log,b we get that
clogyn <log,n =clogyn

* Claim: Forany a, and b>0, (n+a)® is ©(nb)
— (n+a)P < (2n)° for n=|a|
= 2bnP = cnP for c=2° so (n+a)b is O(nb)
— (n+a)P =(n/2)P for n= 2|a| (even if a <0)
=2Pnb =c'n for ¢’'=2"t so (n+a)b is Q(nP)

Working with little-o

* n? = o(n3) [Use algebral]:
2
lim, . " =lim, . L =0
n n
* n3 =0(e") [Use L'Hospital’s rule 3 times]:
3 2

. n . 3n . 6n . 6
llmnﬁx—n =lim, _, —= llmn%m—n = llmnﬁw—n =0
e e e e

Big-Theta, etc. not always “nice”

Fn) n2, n even
n)=

n, nodd
f(n) = ©(n?3) for any a.

Fortunately, such
nasty cases are rare

18

A Possible Misunderstanding?

+ We have looked at Insertion Sort:
— type of complexity analysis Q(n?) (worst case)

» worst-, best-, average-case O(n) (best case)
— types of function bounds

+0,Q06

* These two considerations are independent of
each other

— one can do any type of function bound with any
type of complexity analysis

