
1

CSE 417:  Algorithms and
Computational Complexity

2: Algorithms and Efficiency

Winter 2005
Larry Ruzzo



2

Algorithms: definition

• Procedure to accomplish a task or
solve a well-specified problem
– Well-specified: know what all possible

inputs look like and what output looks like
given them

– “accomplish” via simple, well-defined steps

– Ex: sorting names (via comparison)

– Ex: checking for primality (via +, -, *, /)



3

Algorithms: a sample problem

• Printed circuit-board company has a robot
arm that solders components to the board

• Time to do it depends on
– total distance the arm must move from initial rest

position around the board and back to the initial
positions

• For each board design, must figure out good
order to do the soldering



4

Printed Circuit Board



5

Printed Circuit Board



6

A well-defined Problem

• Input: Given a set S of n points in the plane

• Output: The shortest cycle tour that visits
each point in the set S.

• Better known as “TSP”

• How might you solve it?



7

Nearest Neighbor Heuristic

• Start at some point p0

• Walk first to its nearest neighbor p1

• Repeatedly walk to the nearest
unvisited neighbor until all points have
been visited

• Then walk back to p0



8

Nearest Neighbor Heuristic

p0

p1

p6



9

An input where it works badly

p0

11 24 816



10

An input where it works badly

p0

11 24 816



11

Revised idea - Closest pairs first

• Repeatedly pick the closest pair of
points to join so that the result can still
be part of a single loop in the end
– can pick endpoints of line segments

already created

• How does this work on our bad
example?



12

Another bad example

1

1.5 1.5

 



13

Another bad example

1

1.5 1.5

1+√10  vs 3 



14

Something that works

• For each of the n! orderings of the points 
check the length of the cycle you get

• Keep the best one



15

Two Notes

• The two incorrect algorithms were greedy
– Often very natural & tempting ideas
– they make choices that look great “locally” (and

never reconsidered them)
– often does not work - you get boxed in

• when it does the algorithms are typically efficient

• Our correct algorithm avoids this, but is
incredibly slow
– 20!  is so large that counting to one billion in a

second it would still take 2.4 billion seconds
• (around 70 years!)



16

Something that “works”
(differently)

1. Find Min Spanning Tree



17

Something that “works”
(differently)

2. Walk around it



18

3. Take shortcuts (instead of revisiting)

Something that “works”
(differently)



19

Something that “works” (differently):
Guaranteed Approximation

• Does it seem wacky?

• Maybe, but it’s always within a factor of
2 of the best tour!
– deleting one edge from best tour gives a

spanning tree, so Min spanning tree < best
tour

– best tour ≤ wacky tour ≤ 2 * MST ≤ 2 * best



20

The Morals of the Story

• Simple problems can be hard
– Factoring, TSP

• Simple ideas don’t always work
– Nearest neighbor, closest pair heuristics

• Simple algorithms can be very slow
– Brute-force factoring, TSP

• Changing your objective can be good
– Guaranteed approximation for TSP


