CSE 417: Algorithms and Computational Complexity

2: Algorithms and Efficiency

Winter 2005
Larry Ruzzo

Algorithms: definition

- Procedure to accomplish a task or solve a well-specified problem
- Well-specified: know what all possible inputs look like and what output looks like given them
- "accomplish" via simple, well-defined steps
- Ex: sorting names (via comparison)
- Ex: checking for primality (via $+,-,{ }^{*}, /$)

Algorithms: a sample problem

- Printed circuit-board company has a robot arm that solders components to the board
- Time to do it depends on
- total distance the arm must move from initial rest position around the board and back to the initial positions
- For each board design, must figure out good order to do the soldering

Printed Circuit Board

Printed Circuit Board

A well-defined Problem

- Input: Given a set \mathbf{S} of \mathbf{n} points in the plane
- Output: The shortest cycle tour that visits each point in the set \mathbf{S}.
- Better known as "TSP"
- How might you solve it?

Nearest Neighbor Heuristic

- Start at some point p_{0}
- Walk first to its nearest neighbor p_{1}
- Repeatedly walk to the nearest unvisited neighbor until all points have been visited
- Then walk back to p_{0}

Nearest Neighbor Heuristic

An input where it works badly

Revised idea - Closest pairs first

- Repeatedly pick the closest pair of points to join so that the result can still be part of a single loop in the end
- can pick endpoints of line segments already created
- How does this work on our bad example?

Another bad example

- $1.5^{\bullet} \quad$ -

Another bad example

Something that works

- For each of the n! orderings of the points check the length of the cycle you get
- Keep the best one

Something that "works"

(differently)

1. Find Min Spanning Tree

Something that "works" (differently)
2. Walk around it

Something that "works" (differently):

Guaranteed Approximation

- Does it seem wacky?
- Maybe, but it's always within a factor of 2 of the best tour!
- deleting one edge from best tour gives a spanning tree, so Min spanning tree < best tour
- best tour \leq wacky tour ≤ 2 * MST ≤ 2 * best

Something that "works"

 (differently)3. Take shortcuts (instead of revisiting)

The Morals of the Story

- Simple problems can be hard - Factoring, TSP
- Simple ideas don't always work - Nearest neighbor, closest pair heuristics
- Simple algorithms can be very slow - Brute-force factoring, TSP
- Changing your objective can be good - Guaranteed approximation for TSP

