
1

1

CSE 417: Algorithms and
Computational Complexity

2: Algorithms and Efficiency

Winter 2005
Larry Ruzzo

2

Algorithms: definition

• Procedure to accomplish a task or
solve a well-specified problem
– Well-specified: know what all possible

inputs look like and what output looks like
given them

– “accomplish” via simple, well-defined steps

– Ex: sorting names (via comparison)

– Ex: checking for primality (via +, -, *, /)

3

Algorithms: a sample problem

• Printed circuit-board company has a robot
arm that solders components to the board

• Time to do it depends on
– total distance the arm must move from initial rest

position around the board and back to the initial
positions

• For each board design, must figure out good
order to do the soldering

4

Printed Circuit Board

2

5

Printed Circuit Board

6

A well-defined Problem

• Input: Given a set S of n points in the plane

• Output: The shortest cycle tour that visits
each point in the set S.

• Better known as “TSP”

• How might you solve it?

7

Nearest Neighbor Heuristic

• Start at some point p0

• Walk first to its nearest neighbor p1

• Repeatedly walk to the nearest
unvisited neighbor until all points have
been visited

• Then walk back to p0

8

Nearest Neighbor Heuristic

p0

p1

p6

3

9

An input where it works badly

p0

11 24 816

10

An input where it works badly

p0

11 24 816

11

Revised idea - Closest pairs first

• Repeatedly pick the closest pair of
points to join so that the result can still
be part of a single loop in the end
– can pick endpoints of line segments

already created

• How does this work on our bad
example?

12

Another bad example

1

1.5 1.5

4

13

Another bad example

1

1.5 1.5

1+√10 vs 3

14

Something that works

• For each of the n! orderings of the points
check the length of the cycle you get

• Keep the best one

15

Two Notes

• The two incorrect algorithms were greedy
– Often very natural & tempting ideas
– they make choices that look great “locally” (and

never reconsidered them)
– often does not work - you get boxed in

• when it does the algorithms are typically efficient

• Our correct algorithm avoids this, but is
incredibly slow
– 20! is so large that counting to one billion in a

second it would still take 2.4 billion seconds
• (around 70 years!)

16

Something that “works”
(differently)

1. Find Min Spanning Tree

5

17

Something that “works”
(differently)

2. Walk around it

18

3. Take shortcuts (instead of revisiting)

Something that “works”
(differently)

19

Something that “works” (differently):
Guaranteed Approximation

• Does it seem wacky?

• Maybe, but it’s always within a factor of
2 of the best tour!
– deleting one edge from best tour gives a

spanning tree, so Min spanning tree < best
tour

– best tour ≤ wacky tour ≤ 2 * MST ≤ 2 * best

20

The Morals of the Story

• Simple problems can be hard
– Factoring, TSP

• Simple ideas don’t always work
– Nearest neighbor, closest pair heuristics

• Simple algorithms can be very slow
– Brute-force factoring, TSP

• Changing your objective can be good
– Guaranteed approximation for TSP

