CSE 417: Algorithms and Computational Complexity

Winter 2002

P, NP, and Beyond

More History

\| 1930's

- What is (is not) computable
|1. 1960/70's
- What is (is not) feasibly computable
\| Goal - a (largely) technology independent theory of time required by algorithms
\| Key modeling assumptions/approximations Asymptotic (Big-O), worst case is revealing Polynomial, exponential time - qualitatively different

Polynomial vs
 Exponential Growth

Another view of Poly vs Exp

Next year's computer will be $2 x$ faster. If I can solve problem of size N_{0} today, how large a problem can I solve in the same time next year?

Complexity	Increase	E.g. $\bar{T}=10^{12}$	
$\mathrm{O}(\mathrm{n})$	$\mathrm{n}_{0} \rightarrow 2 \mathrm{n}_{0}$	10^{12}	2×10^{12}
$\mathrm{O}\left(\mathrm{n}^{2}\right)$	$\mathrm{n}_{0} \rightarrow \sqrt{ } 2 \mathrm{n}_{0}$	10^{6}	1.4×10^{6}
$\mathrm{O}\left(\mathrm{n}^{3}\right)$	$\mathrm{n}_{0} \rightarrow 3 \sqrt{ } 2 \mathrm{n}_{0}$	10^{4}	1.25×10^{4}
$2^{\mathrm{n} / 10}$	$\mathrm{n}_{0} \rightarrow \mathrm{n}_{0}+10$	400	410
2^{n}	$\mathrm{n}_{0} \rightarrow \mathrm{n}_{0}+1$	40	41

Polynomial versus exponential

- We'll say any algorithm whose run-time is
| polynomial is good
I bigger than polynomial is bad
I. Note - of course there are exceptions:
$\| \mathrm{n}^{100}$ is bigger than $(1.001)^{\mathrm{n}}$ for most practical values of n but usually such run-times don't show up
I There are algorithms that have run-times like $\mathrm{O}\left(2^{n / 22}\right)$ and these may be useful for small input sizes, but they're not too common either

Some Convenient Technicalities

|| "Problem" - the general case
\| Ex: The Clique Problem: Given a graph G and an integer k , does G contain a k-clique?
|| "Problem Instance" - the specific cases
1 Ex: Does $\nabla>$ contain a 4-clique? (no)
I Ex: Does \leadsto contain a 3-clique? (yes)
Decision Problems - Just Yes/No answers

- Problems as Sets of "Yes" Instances
| Ex: CLIQUE $=\{(\mathrm{G}, \mathrm{k}) \mid \mathrm{G}$ contains a k -clique $\}$

Decision problems

- Computational complexity usually analyzed using decision problems
1 answer is just 1 or 0 (yes or no).
Why?
\| much simpler to deal with
deciding whether G has a k-clique, is certainly no harder than finding a k-clique in G, so a lower bound on deciding is also a lower bound on finding
I Less important, but if you have a good decider, you can often use it to get a good finder. (Ex.: does G still have a k-clique after I remove this vertex?)

Computational Complexity

- Classify problems according to the amount of computational resources used by the best algorithms that solve them

Recall:
| worst-case running time of an algorithm
max \# steps algorithm takes on any input of size n
|| Define:
I $\operatorname{TIME}(f(n))$ to be the set of all decision problems solved by algorithms having worst-case running time O(f(n))

Beyond P?

1 There are many natural, practical problems for which we don't know any polynomial-time algorithms
lle.g. decisionTSP:
I Given a weighted graph G and an integer k, does there exist a tour that visits all vertices in G having total weight at most k ? alol

Polynomial time

|l Define P (polynomial-time) to be
I the set of all decision problems solvable by algorithms whose worst-case running time is bounded by some polynomial in the input size.
\| $\mathrm{P}=\mathrm{U}_{\mathrm{k} 20} \operatorname{TIME}\left(\mathrm{n}^{k}\right)$

Solving TSP given a solution to decisionTSP

- Use binary search and several calls to decisionTSP to figure out what the exact total weight of the shortest tour is.
I Upper and lower bounds to start are n times largest and smallest weights of edges, respectively
I Call W the weight of the shortest tour.
II Now figure out which edges are in the tour
I For each edge e in the graph in turn, remove e and see if there is a tour of weight at most W using decisionTSP
if not then e must be in the tour so put it back

More examples

II Independent-Set:
I Given a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and an integer k , is there a subset U of V with $|\mathrm{U}| \geq \mathrm{k}$ such that no two vertices in U are joined by an edge.

- Clique:
| Given a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and an integer k , is there a subset U of V with $|U| \geq k$ such that every pair of vertices in U is joined by an edge.

Satisfiability

Boolean variables x_{1}, \ldots, x_{n} II taking values in $\{0,1\}$. $0=$ false, $1=$ true
|literals
|| x_{i} or $\neg x_{i}$ for $i=1, \ldots, n$
I. Clause

I a logical OR of one or more literals
l e.g. $\left(x_{1} \vee \neg x_{3} \vee x_{7} \vee x_{12}\right)$

- CNF formula

I a logical AND of a bunch of clauses

More History - As of 1970

|| Many of the above problems had been studied for decades

- All had real, practical applications
- None had poly time algorithms; exponential was best known

But, it turns out they all have a very deep similarity under the skin

Satisfiability

- CNF formula example
$\|\left(x_{1} \vee \neg x_{3} \vee x_{7} \vee x_{12}\right) \wedge\left(x_{2} \vee \neg x_{4} \vee x_{7} \vee x_{5}\right)$
II If there is some assignment of 0 's and 1 's to the variables that makes it true then we say the formula is satisfiable
I the one above is, the following isn't
$\| x_{1} \wedge\left(\neg x_{1} \vee x_{2}\right) \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge \neg x_{3}$
I. Satisfiability: Given a CNF formula F, is it satisfiable?

Common property of these problems

|| There is a special piece of information, a short hint or proof, that allows you to efficiently verify (in polynomial-time) that the YES answer is correct. This hint might be very hard to find

Il e.g.
I DecisionTSP: the tour itself,
II Independent-Set, Clique: the set U
| Satisfiability: an assignment that makes F true.

More Precise Definition of NP

A decision problem is in NP iff there is a polynomial time procedure $\mathrm{v}(.,$.$) , and an$ integer k such that
You can verify the YES answers efficiently
I for every YES problem instance x there is a hint h with $|\mathrm{h}| \leq|\mathrm{x}|^{\mathrm{k}}$ such that $\mathrm{v}(\mathrm{x}, \mathrm{h})=\mathrm{YES}$
and
I for every NO problem instance x there is no hint h with $|h| \leq|x|^{k}$ such that $v(x, h)=Y E S$
No hint can fool your polynomial time verifier into saying YES for a NO instance

Example: CLIQUE is in NP

```
procedure v(x,h)
    if
        x is a well-formed representation of a graph
        G = (V, E) and an integer k,
    and
        h}\mathrm{ is a well-formed representation of a k vertex
        subset U of V,
    and
        U}\mathrm{ is a clique in G,
    then output "YES"
    else output "l'm unconvinced"

\section*{Is it correct?}

For every \(x=(G, k)\) such that \(G\) contains a \(k\)-clique, there is a hint \(h\) that will cause \(v(x, h)\) to say YES, namely \(h=a\) list of the vertices in such a k-clique
and
INo hint can fool \(v\) into saying yes if either x isn't well-formed (the uninteresting case) or if \(x=(G, k)\) but \(G\) does not have any cliques of size \(k\) (the interesting case)

\section*{Keys to showing that a problem is in NP}
\| What's the output? (must be YES/NO)
- What's the input? Which are YES?

II For every given YES input, is there a hint that would help?
I OK if some inputs need no hint
- For any given NO input, is there a hint that would trick you?

\section*{Solving NP problems without hints}
|| The only obvious algorithm for most of these problems is brute force:
I try all possible hints and check each one to see if it works.
I Exponential time:
\(2^{n}\) truth assignments for \(n\) variables
\(n\) ! possible TSP tours of \(n\) vertices
\(\binom{n}{k}\) possible \(k\) element subsets of n vertices
etc.

\section*{What We Know}

Nobody knows if all problems in NP can be done in polynomial time, i.e. does
\(\mathrm{P}=\mathrm{NP}\) ?
I one of the most important open questions in all of science.
I huge practical implications
- Every problem in P is in NP
ll one doesn't even need a hint for problems in P so just ignore any hint you are given
- Every problem in NP is in exponential time


\section*{P vs NP}
```

| Theory | Practice
P = NP ?
| Open Problem!
| I bet against it
\| Many interesting, useful, natural, well-studied problems known to be NPcomplete
With rare exceptions, no one routinely succeeds in finding exact solutions to large, arbitrary instances

```

\section*{More Connections}

Some Examples in NP
I Satisfiability
| Independent-Set
\| Clique
| Vertex Cover
II All hard to solve; hints seem to help on all
Very surprising fact:
| Fast solution to any gives fast solution to all!

\section*{NP-hardness \& NP-completeness}
\| Alternative approach
I show that they are at least as hard as any problem in NP

Rough definition:
I A problem is NP-hard iff it is at least as hard as any problem in NP
\| A problem is NP-complete iff it is both NP-hard in NP

\section*{NP-hardness \& \\ NP-completeness}
- Some problems in NP seem hard
| people have looked for efficient algorithms for them for hundreds of years without success
\| However
I nobody knows how to prove that they are really hard to solve, i.e. \(\mathrm{P} \neq \mathrm{NP}\)
\[
28
\]


\section*{What to do? Hopeless?}
|l Heuristics: perhaps there's an alg that's:
| usually fast, and/or
I usually succeeds
II Approximation Algorithms: Would you settle for an answer within \(1 \%\) of optimal? 10\%? 10x?

\section*{Is NP as bad as it gets?}

1 NO! NP-complete problems are frequently encountered, but there's worse:
I Some problems provably require exponential time.

Ex: Does P halt on x in \(2^{\mathrm{x}} /\) steps?
| Some require \(2^{n}, 2^{2^{n}}, 2^{2^{2^{n}}}, \ldots\) steps
| And of course, some are just plain uncomputable
```

Summary
Big-O - good
II P - good

- Exp - bad
- Hints help? NP
- NP-hard, NP-complete - bad (I bet)

```
```

