
1

1

&6(�������$OJRULWKPV�DQG�
&RPSXWDWLRQDO�&RPSOH[LW\

Winter 2002

P, NP, and Beyond

2

More History

❚ 1930’s      
– What is (is not) computable

❚ 1960/70's 
– What is (is not) feasibly computable

❙ Goal – a (largely) technology independent 
theory of time required by algorithms

❙ Key modeling assumptions/approximations 
❘ Asymptotic (Big-O), worst case is revealing

❘ Polynomial, exponential time – qualitatively different

3

100 200 300 400

2�108

4�108

6�108

8�10
8

1�109

Polynomial vs 
Exponential Growth

22n

2n/10

1000n2

44140n0Ån0 +12n

410400n0Ån0+102n /10

1.25  x 104104n0Å
3√2 n0O(n3)

1.4  x 106106 n0Å√2 n0O(n2)
2  x 10121012n0Å2n0O(n)

IncreaseComplexity

Another view of Poly vs Exp

Next year’s computer will be 2x faster.  If I 
can solve problem of size N0 today, how 
large a problem can I solve in the same 
time next year? 

E.g. T=1012

5

Polynomial versus exponential
❚ We’ll say any algorithm whose run-time is

❙ polynomial is good 

❙ bigger than polynomial is bad

❚ Note – of course there are exceptions:
❙ n100 is bigger than (1.001)n for most practical values 

of n but usually such run-times don’t show up

❙ There are algorithms that have run-times like O(2n/22)
and these may be useful for small input sizes, but 
they're not too common either

6

Some Convenient Technicalities
❚ "Problem" – the general case

❙ Ex: The Clique Problem: Given a graph G 
and an integer k, does G contain a k-clique?

❚ "Problem Instance" – the specific cases
❙ Ex: Does               contain a 4-clique? (no)
❙ Ex: Does               contain a 3-clique? (yes)

❚ Decision Problems – Just Yes/No answers
❚ Problems as Sets of "Yes" Instances

❙ Ex: CLIQUE = { (G,k) | G contains a k-clique }



2

7

Decision problems
❚ Computational complexity usually analyzed 

using decision problems
❙ answer is just 1 or 0 (yes or no).

❚ Why?
❙ much simpler to deal with
❙ deciding whether G has a k-clique, is certainly no 

harder than finding a k-clique in G, so a lower bound 
on deciding is also a lower bound on finding

❙ Less important, but if you have a good decider, you 
can often use it to get a good finder.  (Ex.: does G still 
have a k-clique after I remove this vertex?)  

8

Computational Complexity
❚ Classify problems according to the amount of 

computational resources used by the best 
algorithms that solve them

❚ Recall:  
❙ worst-case running time of an algorithm 

❘ max # steps algorithm takes on any input of size n

❚ Define:
❙ TIME(f(n)) to be the set of all decision problems

solved by algorithms having worst-case running time 
O(f(n))

9

Polynomial time

❚ Define 3 (polynomial-time) to be 
❙ the set of all decision problems solvable by 

algorithms whose worst-case running time is 
bounded by some polynomial in the input 
size. 

❚ 3 = Uk≥0TIME(nk)

10

Beyond 3?

❚ There are many natural, practical 
problems for which we don’t know any 
polynomial-time algorithms

❚ e.g. decisionTSP:  
❙ Given a weighted graph G and an integer k, 

does there exist a tour that visits all vertices 
in G having total weight at most k?

11

Solving TSP given a solution to 
decisionTSP
❚ Use binary search and several calls to 

decisionTSP to figure out what the exact total 
weight of the shortest tour is.
❙ Upper and lower bounds to start are n times largest 

and smallest weights of edges, respectively

❙ Call W the weight of the shortest tour.

❚ Now figure out which edges are in the tour
❙ For each edge e in the graph in turn, remove e and 

see if there is a tour of weight at most W using 
decisionTSP

❘ if not then e must be in the tour so put it back

12

More examples

❚ Independent-Set: 
❙ Given a graph G=(V,E) and an integer k, is 

there a subset U of V with |U| ≥ k such that no 
two vertices in U are joined by an edge.

❚ Clique: 
❙ Given a graph G=(V,E) and an integer k, is 

there a subset U of V with |U| ≥ k such that 
every pair of vertices in U is joined by an 
edge.



3

13

Satisfiability

❚ Boolean variables x1,...,xn

❙ taking values in {0,1}.  0=false, 1=true

❚ Literals
❙ xi or ¬xi for i=1,...,n

❚ Clause
❙ a logical OR of one or more literals

❙ e.g. (x1 ∨ ¬x3 ∨ x7 ∨ x12)

❚ CNF formula
❙ a logical AND of a bunch of clauses

14

Satisfiability

❚ CNF formula example
❙ (x1 ∨ ¬x3 ∨ x7 ∨ x12) ∧ ( x2 ∨ ¬x4 ∨ x7 ∨ x5)

❚ If there is some assignment of 0’s and 1’s 
to the variables that makes it true then we 
say the formula is satisfiable
❙ the one above is, the following isn’t

❙ x1 ∧ (¬x1 ∨ x2) ∧ (¬x2 ∨ x3) ∧ ¬x3

❚ Satisfiability:  Given a CNF formula F, is it 
satisfiable?

15

More History – As of 1970

❚ Many of the above problems had been 
studied for decades

❚ All had real, practical applications
❚ None had poly time algorithms; 

exponential was best known

❚ But, it turns out they all have a very deep 
similarity under the skin

16

Common property of these 
problems
❚ There is a special piece of information, a short 

hint or proof, that allows you to efficiently verify 
(in polynomial-time) that the YES answer is 
correct.  This hint might be very hard to find

❚ e.g.  
❙ DecisionTSP: the tour itself, 
❙ Independent-Set, Clique: the set U
❙ Satisfiability: an assignment that makes F

true.

17

The complexity class 13
13 consists of all decision problems where 

❚ You can verify the YES answers efficiently 
(in polynomial time) given a short 
(polynomial-size) hint

And

❚ No hint can fool your polynomial time 
verifier into saying YES for a NO instance

18

More Precise Definition of 13

❚ A decision problem is in NP iff there is a 
polynomial time procedure v(.,.), and an 
integer k such that 
❙ for every YES problem instance x there is a 

hint h with |h| ≤ |x|k such that v(x,h) = YES 
and
❙ for every NO problem instance x there is no 

hint h with |h| ≤ |x|k such that v(x,h) = YES



4

19

Example: CLIQUE is in NP
procedure v(x,h)

if 
x is a well-formed representation of  a graph 
G = (V, E) and an integer k, 

and 
h is a well-formed representation of a k vertex 
subset U of V, 

and 
U is a clique in G, 

then output "YES"
else output "I’m unconvinced" 

20

Is it correct?

❚ For every x = (G,k) such that G contains a 
k-clique, there is a hint h that will cause 
v(x,h) to say YES, namely h = a list of the 
vertices in such a k-clique

and
❚ No hint can fool v into saying yes if either 

x isn’t well-formed (the uninteresting case) 
or if x = (G,k) but G does not have any 
cliques of size k (the interesting case)

21

Keys to showing  that 
a problem is in NP

❚ What’s the output?  (must be YES/NO)
❚ What’s the input?  Which are YES?
❚ For every given YES input, is there a hint 

that would help?
❙ OK if some inputs need no hint

❚ For any given NO input, is there a hint that 
would trick you?

22

Solving 13�problems 
without hints

❚ The only obvious algorithm for most of 
these problems is brute force:
❙ try all possible hints and check each one to 

see if it works.
❙ Exponential time:

❘ 2n truth assignments for n variables

❘ n! possible TSP tours of n vertices

❘ possible k element subsets of n vertices

❘ etc.








k

n

23

What We Know
❚ Nobody knows if all problems in NP can 

be done in polynomial time, i.e. does 
P=NP?
❙ one of the most important open questions in 

all of science.
❙ huge practical implications

❚ Every problem in P is in NP
❙ one doesn’t even need a hint for problems in 

P so just ignore any hint you are given

❚ Every problem in NP is in exponential time
24

P and NP

NP

P

Exp



5

25

P vs NP
❚ Theory

❙ P = NP ?

❙ Open Problem!
❙ I bet against it

❚ Practice
❙ Many interesting, useful, 

natural, well-studied 
problems known to be NP-
complete

❙ With rare exceptions, no one 
routinely succeeds in finding 
exact solutions to large, 
arbitrary instances

26

More Connections

❚ Some Examples in NP
❙ Satisfiability
❙ Independent-Set
❙ Clique
❙ Vertex Cover

❚ All hard to solve; hints seem to help on all
❚ Very surprising fact:

❙ Fast solution to any gives fast solution to all!

27

NP-hardness & 
NP-completeness

❚ Some problems in NP seem hard
❙ people have looked for efficient algorithms for 

them for hundreds of years without success

❚ However
❙ nobody knows how to prove that they are 

really hard to solve, i.e. P≠ NP

28

NP-hardness & 
NP-completeness
❚ Alternative approach

❙ show that they are at least as hard as any 
problem in NP

❚ Rough definition:
❙ A problem is NP-hard iff it is at least as hard 

as any problem in NP
❙ A problem is NP-complete iff it is both

❘ NP-hard
❘ in NP

29

Polynomial Time Reduction 

❚ L ≤p R if there is a poly time algorithm for L
assuming a poly time subroutine for R

❚ Thus, fast alg for R implies fast alg for L
❚ If you can prove there is no fast alg for L, 

then that proves there is no fast alg for R

30

P and NP

NP

P

NP-complete

NP-hard



6

31

What to do?  Hopeless?

❚ Heuristics: perhaps there’s an alg that’s:
❙ usually fast, and/or
❙ usually succeeds

❚ Approximation Algorithms: Would you 
settle for an answer within 1% of optimal?  
10% ?  10x ? 

32

Is NP as bad as it gets?

❚ NO!  NP-complete problems are 
frequently encountered, but there’s worse:
❙ Some problems provably require exponential 

time.
❘ Ex: Does P halt on x in 2|x| steps?

❙ Some require steps

❙ And of course, some are just plain 
uncomputable

...,2,2,2
222

nnn

33

Summary

❚ Big-O    – good
❚ P           – good
❚ Exp       – bad
❚ Hints help?  NP
❚ NP-hard, NP-complete – bad (I bet)


