CSE 417: Algorithms and
Computational Complexity

Winter 2002

P, NP, and Beyond

More History

1930’s
— What is (is not) computable
1960/70's
— What is (is not) feasibly computable
Goal — a (largely) technology independent
theory of time required by algorithms
Key modeling assumptions/approximations
Asymptotic (Big-O), worst case is revealing
Polynomial, exponential time — qualitatively different

2

Polynomial vs
Exponential Growth

810 w10

1 1000n2

100 200 300 400

Another view of Poly vs Exp

Next year's computer will be 2x faster. If |
can solve problem of size N, today, how
large a problem can | solve in the same
time next year?

Complexity | Increase E.g. T=1012

Oo(n) Ny >2n, 1012 2 x 1012
O(n?) ng >v2n, 10%| 1.4 x108
O(n3) ng >3V2 n, 104| 1.25 x10%
2n/10 n, >n,+10 | 400 410

2n Ny >Ny +1 40 41| .

Polynomial versus exponential

We’'ll say any algorithm whose run-time is
polynomial is good
bigger than polynomial is bad

Note — of course there are exceptions:
n1% js bigger than (1.001)" for most practical values
of n but usually such run-times don’t show up
There are algorithms that have run-times like O(2"/22)
and these may be useful for small input sizes, but
they're not too common either

Some Convenient Technicalities

"Problem" — the general case

Ex: The Clique Problem: Given a graph G
and an integer k, does G contain a k-clique?

"Problem Instance" — the specific cases

Ex: Doesw contain a 4-clique? (no)

Ex: Doesw contain a 3-clique? (yes)
Decision Problems — Just Yes/No answers
Problems as Sets of "Yes" Instances

Ex: CLIQUE = { (G,k) | G contains a k-clique }

Decision problems

Computational complexity usually analyzed
using decision problems
answer is just 1 or O (yes or no).

Why?
much simpler to deal with
deciding whether G has a k-clique, is certainly no
harder than finding a k-clique in G, so a lower bound
on deciding is also a lower bound on finding
Less important, but if you have a good decider, you
can often use it to get a good finder. (Ex.: does G still
have a k-clique after | remove this vertex?)

Computational Complexity

Classify problems according to the amount of
computational resources used by the best
algorithms that solve them

Recall:
worst-case running time of an algorithm
max # steps algorithm takes on any input of size n
Define:

TIME(f(n)) to be the set of all decision problems
solved by algorithms having worst-case running time

O(f(n)

Polynomial time

Define P (polynomial-time) to be
the set of all decision problems solvable by
algorithms whose worst-case running time is
bounded by some polynomial in the input
size.

P = U, TIME(n¥

Beyond P?

There are many natural, practical
problems for which we don’t know any
polynomial-time algorithms

e.g. decisionTSP:
Given a weighted graph G and an integer Kk,
does there exist a tour that visits all vertices
in G having total weight at most k?

Solving TSP given a solution to
decisionTSP

Use binary search and several calls to
decisionTSP to figure out what the exact total
weight of the shortest tour is.

Upper and lower bounds to start are n times largest
and smallest weights of edges, respectively

Call W the weight of the shortest tour.

Now figure out which edges are in the tour

For each edge e in the graph in turn, remove e and
see if there is a tour of weight at most W using
decisionTSP

if not then e must be in the tour so put it back

More examples

Independent-Set:
Given a graph G=(V,E) and an integer k, is
there a subset U of V with |U| = k such that no
two vertices in U are joined by an edge.

Clique:
Given a graph G=(V,E) and an integer k, is
there a subset U of V with |U| = k such that
every pair of vertices in U is joined by an
edge.

Satisfiability

Boolean variables x;,...,X,
taking values in {0,1}. O=false, 1=true
Literals
x; or =x; for i=1,...,n
Clause
a logical OR of one or more literals
e.g. (X; =%z Ox7 OXyp)
CNF formula
a logical AND of a bunch of clauses

Satisfiability

CNF formula example

(X, O3 0% OXq5) O(X, 0%, Ox7 OXs)
If there is some assignment of 0's and 1's
to the variables that makes it true then we
say the formula is satisfiable

the one above is, the following isn't

X, O (=% Ox,) O (=%, Ox5) OaXg
Satisfiability: Given a CNF formula F, is it
satisfiable?

More History — As of 1970

Many of the above problems had been
studied for decades

All had real, practical applications

None had poly time algorithms;
exponential was best known

But, it turns out they all have a very deep
similarity under the skin

Common property of these
problems

There is a special piece of information, a short
hint or proof, that allows you to efficiently verify
(in polynomial-time) that the YES answer is
correct. This hint might be very hard to find

e.g.
DecisionTSP: the tour itself,
Independent-Set, Clique: the set U

Satisfiability: an assignment that makes F
true.

The complexity class NP

NP consists of all decision problems where
You can verify the YES answers efficiently
(in polynomial time) given a short
(polynomial-size) hint

And

No hint can fool your polynomial time
verifier into saying YES for a NO instance

More Precise Definition of NP

A decision problem is in NP iff there is a
polynomial time procedure v(.,.), and an
integer k such that
for every YES problem instance x there is a
hint h with |h| < |x|* such that v(x,h) = YES
and

for every NO problem instance x there is no
hint h with |h| < |x|* such that v(x,h) = YES

Example: CLIQUE is in NP

procedure v(x,h)
if
x is a well-formed representation of a graph
G = (V, E) and an integer k,
and

h is a well-formed representation of a k vertex
subset U of V,

and
Uis acliquein G,
then output "YES"
else output "I'm unconvinced"

Is it correct?

For every x = (G,k) such that G contains a
k-clique, there is a hint h that will cause
v(x,h) to say YES, namely h = a list of the
vertices in such a k-clique

and

No hint can fool v into saying yes if either
x isn’'t well-formed (the uninteresting case)
or if x = (G,k) but G does not have any
cligues of size k (the interesting case)

Keys to showing that
aproblem isin NP

What's the output? (must be YES/NO)
What's the input? Which are YES?
For every given YES input, is there a hint
that would help?

OK if some inputs need no hint
For any given NO input, is there a hint that
would trick you?

Solving NP problems
without hints

The only obvious algorithm for most of
these problems is brute force:

try all possible hints and check each one to
see if it works.
Exponential time:

2n truth assignments for n variables

n! possible TSP tours of n vertices

EPKH possible k element subsets of n vertices
ke

etc.

What We Know

Nobody knows if all problems in NP can
be done in polynomial time, i.e. does
P=NP?
one of the most important open guestions in
all of science.
huge practical implications
Every problemin P is in NP

one doesn’t even need a hint for problems in
P so justignore any hint you are given

Every problem in NP is in exponential time

23

P and NP Exp

P vs NP
Theory Practice
P=NP? Many interesting, useful,
Open Problem! natural, well-studied
I bet against it problems known to be NP-
complete

With rare exceptions, no one
routinely succeeds in finding
exact solutions to large,
arbitrary instances

More Connections

Some Examples in NP

Satisfiability

Independent-Set

Clique

Vertex Cover
All hard to solve; hints seem to help on all
Very surprising fact:

Fast solution to any gives fast solution to all!

NP-hardness &
NP-completeness

Some problems in NP seem hard
people have looked for efficient algorithms for
them for hundreds of years without success
However
nobody knows how to prove that they are
really hard to solve, i.e. P# NP

NP-hardness &
NP-completeness

Alternative approach

show that they are at least as hard as any
problem in NP

Rough definition:
A problem is NP-hard iff it is at least as hard
as any problem in NP
A problem is NP-complete iff it is both
NP-hard
in NP

Polynomial Time Reduction

L <R if there is a poly time algorithm for L
assuming a poly time subroutine for R

Thus, fast alg for R implies fast alg for L

If you can prove there is no fast alg for L,
then that proves there is no fast alg for R

P and NP

NP-complete

What to do? Hopeless?

Heuristics: perhaps there’s an alg that’s:
usually fast, and/or
usually succeeds
Approximation Algorithms: Would you
settle for an answer within 1% of optimal?
10% ? 10x ?

Is NP as bad as it gets?

NO! NP-complete problems are
frequently encountered, but there’s worse:
Some problems provably require exponential

time.
Ex: Does P halt on x in 21X steps?
Some require 2", 27,27 | ... steps

And of course, some are just plain
uncomputable

Summary
Big-O - good
P — good
Exp — bad

Hints help? NP
NP-hard, NP-complete — bad (I bet)

