

Another view of Poly vs Exp

Next year's computer will be 2x faster. If I can solve problem of size N_0 today, how large a problem can I solve in the same time next year?

Complexity	Increase	E.g. T=10 ¹²		
O(n)	$n_0 \rightarrow 2n_0$	10 ¹²	2 x 10 ¹²	
O(n ²)	$n_0 \rightarrow \sqrt{2} n_0$	10 ⁶	1.4 x 10 ⁶	
O(n ³)	$n_0 \rightarrow 3\sqrt{2} n_0$	10 ⁴	1.25 x 104	
2 ^{n /10}	n ₀ →n ₀ +10	400	410	
2 ⁿ	$n_0 \rightarrow n_0 + 1$	40	41	4

There are algorithms that have run-times like O(2^{n/22}) and these may be useful for small input sizes, but they're not too common either

5

Decision problems

- Computational complexity usually analyzed using decision problems

 answer is just 1 or 0 (yes or no).
- Why?
 - I much simpler to deal with
 - I deciding whether G has a k-clique, is certainly no harder than finding a k-clique in G, so a lower bound on deciding is also a lower bound on finding
 - Less important, but if you have a good decider, you can often use it to get a good finder. (Ex.: does G still have a k-clique after I remove this vertex?)

Computational Complexity

Classify problems according to the amount of computational resources used by the best algorithms that solve them

Recall:

worst-case running time of an algorithm
 max # steps algorithm takes on any input of size n

Define:

I TIME(f(n)) to be the set of all decision problems solved by algorithms having worst-case running time O(f(n))

Polynomial time

- Define P (polynomial-time) to be
 - I the set of all decision problems solvable by algorithms whose worst-case running time is bounded by some polynomial in the input size.

$P = U_{k \ge 0} TIME(n^k)$

Beyond P?

- There are many natural, practical problems for which we don't know any polynomial-time algorithms
- e.g. decisionTSP:
 - Given a weighted graph G and an integer k, does there exist a tour that visits all vertices in G having total weight at most k?

10

12

Solving TSP given a solution to decisionTSP

- Use binary search and several calls to decisionTSP to figure out what the exact total weight of the shortest tour is.
- Upper and lower bounds to start are n times largest and smallest weights of edges, respectively
- Call W the weight of the shortest tour.
- Now figure out which edges are in the tour
 - I For each edge e in the graph in turn, remove e and see if there is a tour of weight at most W using decisionTSP

if not then e must be in the tour so put it back

11

More examples Independent-Set: Given a graph G=(V,E) and an integer k, is there a subject II of V with III > k such that

there a subset U of V with $|U| \ge k$ such that no two vertices in U are joined by an edge.

Clique:

Given a graph G=(V,E) and an integer k, is there a subset U of V with $|U| \ge k$ such that every pair of vertices in U is joined by an edge.

More History – As of 1970

- Many of the above problems had been studied for decades
- All had real, practical applications
- None had poly time algorithms; exponential was best known
- But, it turns out they all have a very deep similarity under the skin

Common property of these problems

- There is a special piece of information, a short hint or proof, that allows you to efficiently verify (in polynomial-time) that the YES answer is correct. This hint might be very hard to find
- e.g.
 - DecisionTSP: the tour itself,
 - Independent-Set, Clique: the set U
 - Satisfiability: an assignment that makes F true.

16

 You can verify the YES answers efficiently (in polynomial time) given a short (polynomial-size) hint

And

No hint can fool your polynomial time verifier into saying YES for a NO instance

7

15

More Precise Definition of NP

- A decision problem is in NP iff there is a polynomial time procedure v(.,.), and an integer k such that
 - I for every YES problem instance x there is a hint h with $|h| \leq |x|^k$ such that v(x,h) = YES and
 - for every NO problem instance x there is *no* hint h with $|h| \le |x|^k$ such that v(x,h) = YES

Example: CLIQUE is in NP procedure v(x,h) if x is a well-formed representation of a graph G = (V, E) and an integer k, and h is a well-formed representation of a k vertex subset U of V, and U is a clique in G, then output "YES" else output "I'm unconvinced" 19

Is it correct?

- For every x = (G,k) such that G contains a k-clique, there is a hint h that will cause v(x,h) to say YES, namely h = a list of the vertices in such a k-clique
- and
- No hint can fool v into saying yes if either x isn't well-formed (the uninteresting case) or if x = (G,k) but G does not have any cliques of size k (the interesting case)

Keys to showing that a problem is in NP

- What's the output? (must be YES/NO)
- What's the input? Which are YES?
- For every given YES input, is there a hint that would help?
 - OK if some inputs need no hint
- For any given NO input, is there a hint that would trick you?

Solving **NP** problems without hints

- The only obvious algorithm for most of these problems is brute force:
 - I try all possible hints and check each one to see if it works.
 - Exponential time:

etc

- 2ⁿ truth assignments for n variables
- n! possible TSP tours of n vertices
- $\binom{n}{k}$ possible k element subsets of n vertices

22

- P so just ignore any hint you are given
- Every problem in NP is in exponential time

23

21

What to do? Hopeless?

- Heuristics: perhaps there's an alg that's:
 usually fast, and/or
 - I usually succeeds
- Approximation Algorithms: Would you settle for an answer within 1% of optimal? 10% ? 10x ?

31

Is NP as bad as it gets?

- NO! NP-complete problems are frequently encountered, but there's worse:
 - Some problems provably require exponential time.

32

Ex: Does P halt on x in $2^{|x|}$ steps?

- Some require 2^n , 2^{2^n} , $2^{2^{2^n}}$, ... steps
- And of course, some are just plain uncomputable

Summary

- Big-O good
- P good
- Exp bad
- Hints help? NP
- NP-hard, NP-complete bad (I bet)

33