CSE 417: Algorithms and
Computational Complexity

Winter 2002
Justin Campbell

Russell’s Paradox

Similar in flavor to the Halting problem.

Consider the set of all sets that don’t
contain themselves.

Example: { a, b, {a} }

Does this set contain itself?

Reductions

We write: L <R

We transform an instance of L into an
instance of R such that R’s answer is L’s.

Function L(x)
Run program T to translate input x for L
into an input y for R
Call a subroutine for problem R on input 'y
Output the answer produced by R(y)

Reductions

If L <’ R and R is efficiently solvable then
so is L. Using the contrapositive, if L is
provably slow, then R must be.

If L is Q(P(n)) and the reduction is T(n)
then R is Q(P(n) — T(n))

Reductions Exercise

Show: Vertex-Cover <” Independent Set

Vertex-Cover:
Given an undirected graph G=(V,E) and an integer k is there a
subset W of V of size at most k such that every edge of G has at
least one endpoint in W? (i.e. W covers all vertices of G).

Independent-Set:
Given a graph G=(V,E) and an integer k, is there a subset U of V
with |U] 2 k such that no two vertices in U are joined by an edge.

Properties of polynomial-time
reductions

Theorem: If L <R and R <PS then L <°S

Proof idea:
Compose the reduction T from L to R with the
reduction T’ from R to S to get a new
reduction T”(x)=T'(T(x)) fromL to S.

Computational Complexity

Classify problems according to the
amount of computational resources used
by the best algorithms that solve them

Define:
TIME(f(n)) to be the set of all problems solved
by algorithms having worst-case running time
O(f(n))
Ex: Sorting is in TIME(nlogn).

Polynomial time

Define P (polynomial-time) to be

the set of all problems solvable by algorithms
whose worst-case running time is bounded by
some polynomial in the input size.

P = U, TIME(n¥

Polynomial versus exponential

We’'ll say any algorithm whose run-time is
polynomial is good
bigger than polynomial is bad

Note:
n1% js bigger than (1.001)" for most practical values
of n but usually such run-times don’t show up

There are algorithms that have run-times like O(2"/22)
and these may be useful for small input sizes.

Beyond P?

There are many natural, practical
problems for which we don’t know any
polynomial-time algorithms

e.g. Vertex-Cover, Independent-Set
e.g. Traveling Salesman Problem
e.g. Satisfiability

Satisfiability

Boolean variables x;,...,X,
taking values in {0,1}. O=false, 1=true
Literals
x; or =x; for i=1,...,n
Clause
a logical OR of one or more literals
e.g. (X; =%z Ox7 OXyp)
CNF formula
a logical AND of a bunch of clauses

Satisfiability

CNF formula example

(X, O x5 O%7 OXq5) O(X, 0%, Ox7 OXs)
If there is some assignment of 0's and 1's
to the variables that makes it true then we
say the formula is satisfiable

Is the following formula satisfiable?

X, O (=% O%p) O(=%, Oxg) OXg

Satisfiability: Given a CNF formula F, is it
satisfiable?

Common property of these hard
problems

There is a special piece of information, a short
hint or proof, that allows you to efficiently verify
(in polynomial-time) that the answer is correct.
This hint might be very hard to find.

e.g.
Independent-Set, Clique: the set of vertices

Satisfiability: an assignment that makes F
true.

The complexity class NP

NP consists of all problems where one can
verify the answers efficiently (in
polynomial time) given a short
(polynomial-size) hint.

The only obvious algorithm for most of
these problems is brute force:

try all possible hints and check each one to
see if it works.

Exponential time.

Unlike undecidability

Nobody knows if all these problems in NP
can all be done in polynomial time, i.e.
does P=NP?

one of the most important open guestions in

all of science.

huge practical implications

How are P and NP related?

P and NP

NP-hardness &
NP-completeness

Alternative approach

show that they are at least as hard as any
problem in NP

Rough definition:
A problem is NP-hard iff it is at least as hard
as any problem in NP
A problem is NP-complete iff it is both
NP-hard
in NP

NP-hardness &
NP-completeness

Definition: A problem R is NP-hard iff
every problem LONP satisfies L <PR

Definition: A problem R is NP-complete iff
R is NP-hard and R OONP

Not obvious that such problems even exist!

