CSE 417: Algorithms and Computational Complexity

Winter 2002 Justin Campbell

Russell's Paradox

- Similar in flavor to the Halting problem.
- Consider the set of all sets that don't contain themselves.
- Example: { a, b, {a} }
- Does this set contain itself?

Reductions

- We write: $L \leq R$
- We transform an instance of L into an instance of R such that R's answer is L's.

Function L(x)

- Run program T to translate input x for L into an input y for R
- Call a subroutine for problem R on input y

3

Output the answer produced by R(y)

Reductions

- If L ≤^p R and R is efficiently solvable then so is L. Using the contrapositive, if L is provably slow, then R must be.
- If L is Ω(P(n)) and the reduction is T(n) then R is Ω(P(n) – T(n))

Beductions Exercise Show: Vertex-Cover ≤^p Independent Set Vertex-Cover: Given an undirected graph G=(V,E) and an integer k is there a subset W of V of size at most k such that every edge of G has at least one endpoint in W? (i.e. W covers all vertices of G). Independent-Set: Given a graph G=(V,E) and an integer k, is there a subset U of V with |U| ≥ k such that no two vertices in U are joined by an edge.

Properties of polynomial-time reductions

I Theorem: If $L \leq^{P} R$ and $R \leq^{P} S$ then $L \leq^{P} S$

Proof idea:

Compose the reduction T from L to R with the reduction T' from R to S to get a new reduction T''(x)=T'(T(x)) from L to S.

Computational Complexity

- Classify problems according to the amount of computational resources used by the best algorithms that solve them
- Define:
 - I TIME(f(n)) to be the set of all problems solved by algorithms having worst-case running time O(f(n))
 - Ex: Sorting is in TIME(nlogn).

Polynomial time

- Define P (polynomial-time) to be
 - I the set of all problems solvable by algorithms whose worst-case running time is bounded by some polynomial in the input size.

$P = U_{k \ge 0} TIME(n^k)$

Polynomial versus exponential

- We'll say any algorithm whose run-time is polynomial is good
 - bigger than polynomial is bad

Note:

- I n¹⁰⁰ is bigger than (1.001)ⁿ for most practical values of n but usually such run-times don't show up
- I There are algorithms that have run-times like $O(2^{n/22})$ and these may be useful for small input sizes.

Beyond P?

- There are many natural, practical problems for which we don't know any polynomial-time algorithms
- e.g. Vertex-Cover, Independent-Set
- e.g. Traveling Salesman Problem
- e.g. Satisfiability

10

Common property of these hard problems

- There is a special piece of information, a short hint or proof, that allows you to efficiently verify (in polynomial-time) that the answer is correct. This hint might be very hard to find.
- e.g.
 - Independent-Set, Clique: the set of vertices
 - Satisfiability: an assignment that makes F true.

The complexity class NP

- NP consists of all problems where one can verify the answers efficiently (in polynomial time) given a short (polynomial-size) hint.
- The only obvious algorithm for most of these problems is brute force:
 - I try all possible hints and check each one to see if it works.

14

Exponential time.

Unlike undecidability Nobody knows if all these problems in NP

- can all be done in polynomial time, i.e. does P=NP?
 - I one of the most important open questions in all of science.
 - I huge practical implications
- How are P and NP related?

NP-hardness & NP-completeness

- Alternative approach
 - I show that they are at least as hard as any problem in NP

Rough definition:

- A problem is NP-hard iff it is at least as hard as any problem in NP
- A problem is NP-complete iff it is both NP-hard in NP

17

13

15

NP-hardness & NP-completeness

- Definition: A problem R is NP-hard iff every problem L∈ NP satisfies L ≤^PR
- Definition: A problem R is NP-complete iff R is NP-hard and $R \in NP$
- Not obvious that such problems even exist!

18