
1

1

&6(�������$OJRULWKPV�DQG�
&RPSXWDWLRQDO�&RPSOH[LW\

Winter 2002
Justin Campbell

2

Russell’s Paradox

❚ Similar in flavor to the Halting problem.

❚ Consider the set of all sets that don’t
contain themselves.

❚ Example: { a, b, {a} }

❚ Does this set contain itself?

3

Reductions
❚ We write: L ≤ R
❚ We transform an instance of L into an

instance of R such that R’s answer is L’s.

❙ Function L(x)
❘ Run program T to translate input x for L

into an input y for R
❘ Call a subroutine for problem R on input y
❘ Output the answer produced by R(y)

4

Reductions

❚ If L ≤p R and R is efficiently solvable then
so is L. Using the contrapositive, if L is
provably slow, then R must be.

❚ If L is Ω(P(n)) and the reduction is T(n)
then R is Ω(P(n) – T(n))

5

Reductions Exercise

❚ Show: Vertex-Cover ≤p Independent Set
❚ Vertex-Cover:

❙ Given an undirected graph G=(V,E) and an integer k is there a
subset W of V of size at most k such that every edge of G has at
least one endpoint in W? (i.e. W covers all vertices of G).

❚ Independent-Set:
❙ Given a graph G=(V,E) and an integer k, is there a subset U of V

with |U| ≥ k such that no two vertices in U are joined by an edge.

6

Properties of polynomial-time
reductions

❚ Theorem: If L ≤pR and R ≤pS then L ≤pS

❚ Proof idea:
❙ Compose the reduction T from L to R with the

reduction T’ from R to S to get a new
reduction T’’(x)=T’(T(x)) from L to S.

2

7

Computational Complexity

❚ Classify problems according to the
amount of computational resources used
by the best algorithms that solve them

❚ Define:
❙ TIME(f(n)) to be the set of all problems solved

by algorithms having worst-case running time
O(f(n))

❙ Ex: Sorting is in TIME(nlogn).

8

Polynomial time

❚ Define 3 (polynomial-time) to be
❙ the set of all problems solvable by algorithms

whose worst-case running time is bounded by
some polynomial in the input size.

❚ 3 = Uk≥0TIME(nk)

9

Polynomial versus exponential
❚ We’ll say any algorithm whose run-time is

❙ polynomial is good

❙ bigger than polynomial is bad

❚ Note:
❙ n100 is bigger than (1.001)n for most practical values

of n but usually such run-times don’t show up

❙ There are algorithms that have run-times like O(2n/22)
and these may be useful for small input sizes.

10

Beyond 3?

❚ There are many natural, practical
problems for which we don’t know any
polynomial-time algorithms

❚ e.g. Vertex-Cover, Independent-Set
❚ e.g. Traveling Salesman Problem
❚ e.g. Satisfiability

11

Satisfiability
❚ Boolean variables x1,...,xn

❙ taking values in {0,1}. 0=false, 1=true

❚ Literals
❙ xi or ¬xi for i=1,...,n

❚ Clause
❙ a logical OR of one or more literals
❙ e.g. (x1 ∨ ¬x3 ∨ x7 ∨ x12)

❚ CNF formula
❙ a logical AND of a bunch of clauses

12

Satisfiability

❚ CNF formula example
❙ (x1 ∨ ¬x3 ∨ x7 ∨ x12) ∧ (x2 ∨ ¬x4 ∨ x7 ∨ x5)

❚ If there is some assignment of 0’s and 1’s
to the variables that makes it true then we
say the formula is satisfiable
❙ Is the following formula satisfiable?

x1 ∧ (¬x1 ∨ x2) ∧ (¬x2 ∨ x3) ∧ ¬x3

❚ Satisfiability: Given a CNF formula F, is it
satisfiable?

3

13

Common property of these hard
problems
❚ There is a special piece of information, a short

hint or proof, that allows you to efficiently verify
(in polynomial-time) that the answer is correct.
This hint might be very hard to find.

❚ e.g.
❙ Independent-Set, Clique: the set of vertices
❙ Satisfiability: an assignment that makes F

true.

14

The complexity class 13
❚ 13 consists of all problems where one can

verify the answers efficiently (in
polynomial time) given a short
(polynomial-size) hint.

❚ The only obvious algorithm for most of
these problems is brute force:
❙ try all possible hints and check each one to

see if it works.
❙ Exponential time.

15

Unlike undecidability

❚ Nobody knows if all these problems in NP
can all be done in polynomial time, i.e.
does P=NP?
❙ one of the most important open questions in

all of science.
❙ huge practical implications

❚ How are P and NP related?

16

P and NP

NP

P

17

NP-hardness &
NP-completeness
❚ Alternative approach

❙ show that they are at least as hard as any
problem in NP

❚ Rough definition:
❙ A problem is NP-hard iff it is at least as hard

as any problem in NP
❙ A problem is NP-complete iff it is both

❘ NP-hard
❘ in NP

18

NP-hardness &
NP-completeness

❚ Definition: A problem R is NP-hard iff
every problem L∈NP satisfies L ≤pR

❚ Definition: A problem R is NP-complete iff
R is NP-hard and R ∈NP

❚ Not obvious that such problems even exist!

