
1

1

&6(�������$OJRULWKPV�DQG�
&RPSXWDWLRQDO�&RPSOH[LW\

Winter 2002
Computability & Uncomputability

L. Ruzzo & Bill Pentney

2

A Brief History of Ideas
❚ From Classical Greece, if not earlier, "logical

thought" held to be a somewhat mystical ability
❚ Mid 1800’s: Boolean Algebra and foundations of

mathematical logic created possible
"mechanical" underpinnings

❚ 1900: David Hilbert’s famous speech outlines
program: mechanize all of mathematics?
http://mathworld.wolfram.com/HilbertsProblems.html

❚ 1930’s: Gödel, Church, Turing, et al. prove it's
impossible

3

What’s an "Algorithm"?
❚ "Input": finite (but arbitrarily long) sequence of

symbols from a fixed, finite set (e.g., {0,1}, or
{a,b,c}, or "ascii")

❚ "Configuration": a finite (but arbitrarily large)
description of intermediate results in the
computation

❚ "Operations": a fixed set of possible operations,
each "obviously" mechanical, defined by how
they change one config into another

❚ "Program/Algorithm": finite list of operations
(and rules for choosing the order in which they
are executed.)

P
ro

gr
a

m
m

in
g

S
ys

te
m

4

Examples
❚ C/C++/etc.:

main() {
int i; // really an integer

for (i=0;i<10;i++){
…

}
return 0;

}

❚ The Turing Machine
(Alan M. Turing, 1912-54)

a: 0 Å 0/L/a; 1Å0/R/c
b: 0 Å 0/R/b; 1Å1/R/a
c: …

…
z:

0 1 1 0 1 0 0 …

5

Turing Machines

❚ Church-Turing Thesis
❙ Any reasonable model of computation that

includes all possible algorithms is equivalent
in power to a Turing machine

❚ Evidence
❙ Huge numbers of equivalent models to TM’s

based on radically different ideas

6

Universal Turing Machine

❚ A Turing machine interpreter U
❙ On input the code of a program (or Turing

machine) P and an input x, U outputs the
same thing as P does on input x

❙ Basis for modern stored-program computer

❚ Notation:
❙ We’ll write <P> for the code of program P and

<P,x> for the pair of the program code and
input

2

7

Halting Problem

❚ Given: the code of a program P and an
input x for P, i.e. given <P,x>

❚ Output: 1 if P halts on input x and 0 if P
does not halt on input x

❚ Theorem (Turing): There is no program
that solves the halting problem

“The halting problem is undecidable”

8

Diagonal construction

❚ Suppose there is a program H solving the
halting Problem

❚ Now define a new program D such that
❙ D on input x:

❘ runs H checking if the program P whose code is x
halts when given x as input; i.e. does P halt on
input <P>

❘ if H outputs 1 then D goes into an infinite loop

❘ if H outputs 0 then D halts.

9

Code for D assuming
subroutine for H

❚ Function D(x):
❙ if H(x,x)=1 then

❘ while (true); /* loop forever */

❙ else
❘ no-op; /* do nothing and halt */

❙ endif

10

Finishing the argument

❚ Suppose D has code <D> then
❙ D halts on input <D>
❙ iff (by definition of D)
❙ H outputs 0 given program D and input <D>
❙ iff (by definition of H)
❙ D runs forever on input <D>

❚ Contradiction!

11

Undecidability of the Halting
Problem (alternate proof)

❚ Suppose that there is a program H that
computes the answer to the Halting
Problem

❚ We’ll build a table with all the possible
programs down one side and all the
possible inputs along the other and do a
diagonal flip to produce a contradiction

12

ε 0 1 00 01 10 11 000 001 010 011
input

ε
0
1

00
01
10
11
000
001

.

.

pr
og

ra
m

 c
od

e

0 1 1 0 1 1 1 0 0 0 1
1 1 0 1 0 1 1 0 1 1 1
1 0 1 0 0 0 0 0 0 0 1
0 1 1 0 1 0 1 1 0 1 0
0 1 1 1 1 1 1 0 0 0 1
1 1 0 0 0 1 1 0 1 1 1
1 0 1 1 0 0 0 0 0 0 1
0 1 1 1 1 0 1 1 0 1 0
.
.

Entries are 1 if program P given by the code halts on input x
and 0 if it runs forever

3

13

ε 0 1 00 01 10 11 000 001 010 011
input

ε
0
1

00
01
10
11
000
001

.

.

pr
og

ra
m

 c
od

e

1 1 1 0 1 1 1 0 0 0 1
1 0 0 1 0 1 1 0 1 1 1
1 0 0 0 0 0 0 0 0 0 1
0 1 1 1 1 0 1 1 0 1 0
0 1 1 1 0 1 1 0 0 0 1
1 1 0 0 0 0 1 0 1 1 1
1 0 1 1 0 0 1 0 0 0 1
0 1 1 1 1 0 1 0 0 1 0
.
.

Want to create a new program whose halting
properties are given by the flipped diagonal

14

Diagonal construction

❚ Suppose H exists
❚ Now define a new program D such that

❙ D on input x:
❘ runs H checking if the program P whose code is x

halts when given x as input; i.e. does P halt on
input <P>

❘ if H outputs 1 then D goes into an infinite loop

❘ if H outputs 0 then D halts.

15

Relating hardness of problems

❚ We have one problem that we know is
impossible to solve
❙ Halting problem

❚ Showing this took serious effort
❚ We’d like to use this fact to derive that

other problems are impossible to solve
❙ don’t want to go back to square one to do it

16

Reductions
❚ Given two problems to solve, L and R.

❙ (think Left and Right)

❚ Suppose you had a translation program T so
that the following would correctly solve L (if you
happened to have code for R handy)

❙ Function L(x)
❘ Run program T to translate input x for L into an

input y for R
❘ Call a subroutine for problem R on input y
❘ Output the answer produced by R(y)

17

Property that makes this correct

❚ It better be the case that no matter what x
is

L(x)=R(y)
i.e. L(x)=R(T(x))

❚ T is called a reduction from problem L to
problem R

❚ If such a T exists we write L ≤ R.

18

Reduction L ≤ R
inputs for L inputs for R

T

x y

L(x)=R(T(x))

Intuition: L is at least as easy as R or, equivalently,
R is at least as hard as L

4

19

Example: BFS ≤ Shortest-Path

❚ BFS: Given a graph G and a vertex v, output
the BFS tree of G started at v

❚ Shortest-Paths: Given a graph G with non-
negative weights on its edges, and a vertex v
output the shortest-path tree of G from v

❚ Reduction T: Given G and v, create weights for
all edges in G giving each edge weight 1

❚ <G,v> → <G,weights,v>
T

20

Properties of reductions

❚ Given that I have any reduction T such
that L(x)=R(T(x))
❙ If I had a program that solves R then I would

have a program that solves L

❚ Therefore
❙ If there is no program that solves L then there

cannot be any program that solves R!
❙ (statement is just equivalent to one above)

21

Another undecidable problem

❚ 1’s problem: Given the code of a program
M does M output 1 on input 1? If so,
answer 1 else answer 0.

❚ Claim: the 1’s problem is undecidable

❚ Proof: by reduction from the Halting
Problem

22

What we want for the reduction

❚ Halting problem takes as input a pair
<P,x>

❚ 1’s problem takes as input <M>

❚ Given <P,x> can we create an <M> so
that M outputs 1 on input 1 exactly when P
halts on input x?

23

Yes

❚ Here is all that we need to do to create M
❙ modify the code of P so that instead of

reading x, x is hard-coded as the input to P
and get rid of all output statements in P

❙ add a new statement at the end of P that
outputs 1.

❚ We can write another program T that can
do this transformation from <P,x> to <M>

24

How we might do the hard-
coding if the code were in C?
❚ Include an assignment at the start that would

place the characters in string x in some array A.
❚ Replace all scanf’s in P with calls to a new

function scanA that simulates scanf but gets its
data from array A.

❚ Replace all printf’s in P by printB which doesn’t
actually do anything.

5

25

Finishing things off

❚ Therefore we get a reduction
❙ Halting Problem ≤ 1’s problem

❚ Since there is no program solving the
Halting Problem there must be no
program solving the 1’s problem.

26

Why the name reduction?
❚ Weird: it maps an easier problem into a

harder one

❚ Same sense as saying Maxwell reduced
the problem of analyzing electricity &
magnetism to solving partial differential
equations
❙ solving partial differential equations in general

is a much harder problem than solving E&M
problems

29

Quick lessons
❚ Don’t rely on the idea of improved

compilers and programming languages to
eliminate major programming errors
❙ truly safe languages can’t possibly do general

computation

❚ Document your code!!!!
❙ there is no way you can expect someone else

to figure out what your program does with just
your codesince....in general it is provably
impossible to do this!

