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A Brief History of Ideas
❚ From Classical Greece, if not earlier, "logical 

thought" held to be a somewhat mystical ability
❚ Mid 1800’s: Boolean Algebra and foundations of 

mathematical logic created possible 
"mechanical" underpinnings

❚ 1900: David Hilbert’s famous speech outlines 
program: mechanize all of mathematics? 
http://mathworld.wolfram.com/HilbertsProblems.html

❚ 1930’s: Gödel, Church, Turing, et al. prove it's 
impossible
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What’s an "Algorithm"?
❚ "Input": finite (but arbitrarily long) sequence of 

symbols from a fixed, finite set (e.g., {0,1}, or 
{a,b,c}, or "ascii")

❚ "Configuration": a finite (but arbitrarily large) 
description of intermediate results in the 
computation

❚ "Operations": a fixed set of possible operations, 
each "obviously" mechanical, defined by how 
they change one config into another

❚ "Program/Algorithm": finite list of operations
(and rules for choosing the order in which they 
are executed.)
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Examples
❚ C/C++/etc.:

main() {
int i; // really an integer

for (i=0;i<10;i++){
…

}
return 0;

}

❚ The Turing Machine 
(Alan M. Turing, 1912-54)

a: 0 Å 0/L/a; 1Å0/R/c
b: 0 Å 0/R/b; 1Å1/R/a
c:              …

…
z:

0 1 1 0 1 0 0 …
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Turing Machines

❚ Church-Turing Thesis
❙ Any reasonable model of computation that 

includes all possible algorithms is equivalent 
in power to a Turing machine

❚ Evidence
❙ Huge numbers of equivalent models to TM’s 

based on radically different ideas
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Universal Turing Machine

❚ A Turing machine interpreter  U
❙ On input the code of a program (or Turing 

machine) P and an input x,  U outputs the 
same thing as P does on input x

❙ Basis for modern stored-program computer

❚ Notation: 
❙ We’ll write <P> for the code of program P and

<P,x> for the pair of the program code and 
input
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Halting Problem

❚ Given: the code of a program P and an 
input x for P, i.e. given <P,x>

❚ Output: 1 if P halts on input x and 0 if P
does not halt on input x

❚ Theorem (Turing): There is no program 
that solves the halting problem 

“The halting problem is undecidable”
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Diagonal construction

❚ Suppose there is a program  H solving the 
halting Problem

❚ Now define a new program D such that 
❙ D on input x:

❘ runs H checking if the program P whose code is x
halts when given x as input; i.e. does P halt on 
input <P>

❘ if H outputs 1 then D goes into an infinite loop

❘ if H outputs 0 then D halts.  
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Code for D assuming 
subroutine for H

❚ Function D(x):
❙ if H(x,x)=1 then

❘ while (true); /* loop forever */

❙ else
❘ no-op; /* do nothing and halt */

❙ endif
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Finishing the argument

❚ Suppose D has code <D> then
❙ D halts on input <D>
❙ iff (by definition of D)
❙ H outputs 0 given program D and input <D>
❙ iff (by definition of H)
❙ D runs forever on input <D>

❚ Contradiction!

11

Undecidability of the Halting 
Problem (alternate proof)

❚ Suppose that there is a program H that 
computes the answer to the Halting 
Problem

❚ We’ll build a table with all the possible 
programs down one side and all the 
possible inputs along the other and do a 
diagonal flip to produce a contradiction 

12

ε 0  1  00  01  10  11  000  001  010  011 ....
input

ε
0
1

00
01
10
11
000
001

.

.
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od

e

0 1  1  0    1     1    1     0      0      0      1  ....
1   1 0  1 0     1    1 0      1 1      1  ....
1   0  1 0    0     0 0 0      0      0      1  ....
0   1  1  0 1     0    1     1      0 1   0  ....
0   1  1  1    1 1    1     0      0      0      1  ....
1   1  0  0    0     1 1     0      1      1      1  ....
1   0  1  1    0     0    0 0      0      0      1  ....
0   1  1  1    1     0    1     1 0      1      0  ....
.     .   .  .   .    .   .   .   .    .    .       .  
.     .   .  .   .    .   .   .   .    .    .       .  

Entries are 1 if program P given by the code halts on input x
and 0 if it runs forever
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ε 0  1  00  01  10  11  000  001  010  011 ....
input

ε
0
1

00
01
10
11
000
001

.

.

pr
og

ra
m

 c
od

e

1 1  1  0    1     1    1     0      0      0      1  ....
1   0 0  1 0     1    1 0      1 1      1  ....
1   0  0 0    0     0 0 0      0      0      1  ....
0   1  1  1 1     0    1     1      0 1   0  ....
0   1  1  1    0 1    1     0      0      0      1  ....
1   1  0  0    0     0 1     0      1      1      1  ....
1   0  1  1    0     0    1 0      0      0      1  ....
0   1  1  1    1     0    1     0 0      1      0  ....
.     .   .  .   .    .   .   .   .    .    .       .  
.     .   .  .   .    .   .   .   .    .    .       .  

Want to create a new program whose halting
properties are given by the flipped diagonal
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Diagonal construction

❚ Suppose H exists
❚ Now define a new program D such that 

❙ D on input x:
❘ runs H checking if the program P whose code is x

halts when given x as input; i.e. does P halt on 
input <P>

❘ if H outputs 1 then D goes into an infinite loop

❘ if H outputs 0 then D halts.  
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Relating hardness of problems

❚ We have one problem that we know is 
impossible to solve
❙ Halting problem

❚ Showing this took serious effort
❚ We’d like to use this fact to derive that 

other problems are impossible to solve
❙ don’t want to go back to square one to do it
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Reductions
❚ Given two problems to solve, L and R.

❙ (think Left and Right)

❚ Suppose you had a translation program T so 
that the following would correctly solve L (if you 
happened to have code for R handy)

❙ Function L(x)
❘ Run program T to translate input x for L into an 

input  y for R
❘ Call a subroutine for problem R on input y
❘ Output the answer produced by R(y)
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Property that makes this correct

❚ It better be the case that no matter what x
is                                                              

L(x)=R(y)  
i.e.     L(x)=R(T(x))

❚ T is called a reduction from problem L to 
problem R

❚ If such a T exists we write L ≤ R.
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Reduction L ≤ R
inputs for L inputs for R

T

x y

L(x)=R(T(x))

Intuition: L is at least as easy as R or, equivalently,
R is at least as hard as L
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Example: BFS ≤ Shortest-Path

❚ BFS: Given a graph G and a vertex v, output 
the BFS tree of G started at v

❚ Shortest-Paths: Given a graph G with non-
negative weights on its edges, and a vertex v
output the shortest-path tree of G from v

❚ Reduction T:  Given G and v, create weights for 
all edges in G giving each edge weight 1

❚ <G,v>  → <G,weights,v>
T
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Properties of reductions

❚ Given that I have any reduction T such 
that L(x)=R(T(x))
❙ If I had a program that solves R then I would 

have a program that solves L

❚ Therefore
❙ If there is no program that solves L then there 

cannot be any program that solves R!
❙ (statement is just equivalent to one above)
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Another  undecidable problem

❚ 1’s problem:  Given the code of a program 
M does M output 1 on input 1? If so, 
answer 1 else answer 0.

❚ Claim: the 1’s problem is undecidable

❚ Proof: by reduction from the Halting 
Problem
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What we want for the reduction

❚ Halting problem takes as input a pair 
<P,x>

❚ 1’s problem takes as input <M>

❚ Given <P,x> can we create an <M> so 
that M outputs 1 on input 1 exactly when P 
halts on input x?
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Yes

❚ Here is all that we need to do to create M
❙ modify the code of P so that instead of 

reading x, x is hard-coded as the input to P
and get rid of all output statements in P

❙ add a new statement at the end of P that 
outputs 1.

❚ We can write another program T that can 
do this transformation from <P,x> to <M> 
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How we might do the hard-
coding if the code were in C?
❚ Include an assignment at the start that would 

place the characters in string x in some array A.
❚ Replace all scanf’s in P with calls to a new 

function scanA that simulates scanf but gets its 
data from array A.

❚ Replace all printf’s in P by printB which doesn’t 
actually do anything.
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Finishing things off

❚ Therefore  we get a reduction 
❙ Halting Problem ≤ 1’s problem

❚ Since there is no program solving the 
Halting Problem there must be no 
program solving the 1’s problem.
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Why the name reduction?
❚ Weird: it maps an easier problem into a 

harder one

❚ Same sense as saying Maxwell reduced
the problem of analyzing electricity & 
magnetism to solving partial differential 
equations
❙ solving partial differential equations in general 

is a much harder problem than solving E&M 
problems
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Quick lessons
❚ Don’t rely on the idea of improved 

compilers and programming languages to 
eliminate major programming errors
❙ truly safe languages can’t possibly do general 

computation

❚ Document your code!!!!
❙ there is no way you can expect someone else 

to figure out what your program does with just 
your code ....since....in general it is provably 
impossible to do this!


