CSE 417: Algorithms and
Computational Complexity

Winter 2002
Computability & Uncomputability
L. Ruzzo & Bill Pentney

A Brief History of Ideas

From Classical Greece, if not earlier, "logical
thought" held to be a somewhat mystical ability
Mid 1800's: Boolean Algebra and foundations of
mathematical logic created possible
"mechanical" underpinnings

1900: David Hilbert's famous speech outlines
program: mechanize all of mathematics?

http://mathworld.wolfram.com/HilbertsProblems.htm|
1930’s: Godel, Church, Turing, et al. prove it's
impossible

What'’s an "Algorithm"?

— Programming System ——

"Input": finite (but arbitrarily long) sequence of
symbols from a fixed, finite set (e.g., {0,1}, or
{a,b,c}, or "ascii")

"Configuration": a finite (but arbitrarily large)
description of intermediate results in the
computation

"Operations": a fixed set of possible operations,
each "obviously" mechanical, defined by how
they change one config into another

"Program/Algorithm": finite list of operations
(and rules for choosing the order in which they
are executed.) 3

Examples
C/C++/etc.: The Turing Machine
(Alan M. Turing, 1912-54)
main() { lo[1]1]o]1]o]o]..

int i; // really an integer
for (i=0;i<10;i++){

}

return O;

a: 0 - 0/L/a; 1>0/R/c
b: 0 = 0/R/b; 1>1/R/a
c:

Turing Machines

Church-Turing Thesis

Any reasonable model of computation that
includes all possible algorithms is equivalent
in power to a Turing machine

Evidence

Huge numbers of equivalent models to TM's
based on radically different ideas

Universal Turing Machine

A Turing machine interpreter U
On input the code of a program (or Turing
machine) P and an input x, U outputs the
same thing as P does on input x

Basis for modern stored-program computer

Notation:

We'll write <P> for the code of program P and
<P,x> for the pair of the program code and

input

Halting Problem

Given: the code of a program P and an
input x for P, i.e. given <P, x>

Output: 1 if P halts on input x and O if P
does not halt on input x

Theorem (Turing): There is no program
that solves the halting problem
“The halting problem is undecidable”

Diagonal construction

Suppose there is a program H solving the
halting Problem

Now define a new program D such that
D oninput x:
runs H checking if the program P whose code is x
halts when given x as input; i.e. does P halt on
input <P>
if H outputs 1 then D goes into an infinite loop
if H outputs 0 then D halts.

Code for D assuming
subroutine for H

Function D(x):
if H(x,x)=1 then
while (true); /* loop forever */
else
no-op; /* do nothing and halt */
endif

Finishing the argument

Suppose D has code <D> then
D halts on input <D>
iff (by definition of D)
H outputs 0 given program D and input <D>
iff (by definition of H)
D runs forever on input <D>
Contradiction!

Undecidability of the Halting
Problem (alternate proof)

Suppose that there is a program H that
computes the answer to the Halting
Problem

We’'ll build a table with all the possible
programs down one side and all the
possible inputs along the other and do a
diagonal flip to produce a contradiction

input
€ 0100 0110 11 000 001 010 011
€ 110 1 1.1 0 O O 1..
0 (1 01 0 1 1 O 1 1 1
1112010 0 0 O O O O 1
0000110 1 01 1 0 1 O
Bo1j0 111 11 0 0 0 1
£10{1 100 0 10 1 1 1
$1111 011 0 O 0 0 0 1
20000 111 1 1 0 1 o0
2001
Entries are 1 if program P given by the code halts on input x
and 0 if it runs forever

input

€ 0100 0110 11 000 001 010 011
€/1110 1 1.1 0 O O 1..
01001 0 1 1 O 1 1 1
1112000 0 0 O O O O 1
2000111 1 01 1 O 1 0
go1o111 0 11 0 0 0 1
£10{1 100 0 0 1 0 1 1 1
$11{1 011 0 0 1 0 O O 1
20000 111 1 01 0 0 1 O
2001
Want to create a new program whose halting
properties are given by the flipped diagonal

Diagonal construction

Suppose H exists
Now define a new program D such that

D oninput x:
runs H checking if the program P whose code is x
halts when given x as input; i.e. does P halt on
input <P>
if H outputs 1 then D goes into an infinite loop
if H outputs 0 then D halts.

Relating hardness of problems

We have one problem that we know is
impossible to solve
Halting problem
Showing this took serious effort
We'd like to use this fact to derive that
other problems are impossible to solve
don’t want to go back to square one to do it

Reductions

Given two problems to solve, L and R.

(think Left and Right)
Suppose you had a translation program T so
that the following would correctly solve L (if you
happened to have code for R handy)

Function L(x)
Run program T to translate input x for L into an
input y for R
Call a subroutine for problem R on input y
Output the answer produced by R(y)

Property that makes this correct

It better be the case that no matter what x
is

L(x)=R(y)
i.,e. LXX)=R(T(x))

T is called a reduction from problem L to
problem R

If such a T exists we write L < R.

ReductionL<R

inputs for L inputs for R

L)=R(T(x))

Intuition: L is at least as easy as R or, equivalently,
R is at least as hard as L

Example: BFS < Shortest-Path

BFS: Given a graph G and a vertex v, output
the BFS tree of G started at v
Shortest-Paths: Given a graph G with non-
negative weights on its edges, and a vertex v
output the shortest-path tree of G from v

Reduction T: Given G and v, create weights for
all edges in G giving each edge weight 1

<G,v> - <G,weights,v>
T

Properties of reductions

Given that | have any reduction T such
that L(x)=R(T(x))
If I had a program that solves R then | would
have a program that solves L

Therefore
If there is no program that solves L then there
cannot be any program that solves R!
(statement is just equivalent to one above)

Another undecidable problem

1's problem: Given the code of a program
M does M output 1 on input 1? If so,
answer 1 else answer 0.

Claim: the 1's problem is undecidable

Proof: by reduction from the Halting
Problem

What we want for the reduction

Halting problem takes as input a pair
<P,x>

1's problem takes as input <M>

Given <P, x> can we create an <M> so
that M outputs 1 on input 1 exactly when P
halts on input x?

Yes

Here is all that we need to do to create M
modify the code of P so that instead of
reading X, x is hard-coded as the input to P
and get rid of all output statements in P
add a new statement at the end of P that
outputs 1.

We can write another program T that can
do this transformation from <P,x> to <M>

How we might do the hard-
coding if the code were in C?

Include an assignment at the start that would
place the characters in string x in some array A.
Replace all scanf's in P with calls to a new
function scanA that simulates scanf but gets its
data from array A.

Replace all printf’s in P by printB which doesn't
actually do anything.

Finishing things off

Therefore we get a reduction
Halting Problem < 1's problem

Since there is no program solving the
Halting Problem there must be no
program solving the 1's problem.

Why the name reduction?

Weird: it maps an easier problem into a
harder one

Same sense as saying Maxwell reduced
the problem of analyzing electricity &
magnetism to solving partial differential
equations
solving partial differential equations in general
is a much harder problem than solving E&M
problems

Quick lessons

Don't rely on the idea of improved
compilers and programming languages to
eliminate major programming errors
truly safe languages can't possibly do general
computation
Document your code!!!!
there is no way you can expect someone else
to figure out what your program does with just

your codesince....in general it is provably
impossible to do this!

