CSE 417: Algorithms and Computational Complexity

Winter 2001
DFS and Strongly Connected
Components

Properties of Directed DFS

- Before DFS(v) returns, it visits all previously unvisited vertices reachable via directed paths from v

An Application:

G has a cycle \Leftrightarrow DFS finds a back edge
\Leftarrow Clear.
\Rightarrow Why can't we have something like this?:

Strongly-connected components

- In directed graph if there is a path from a to b there might not be one from b to a
- a and b are strongly connected iff there is a path in both directions (i.e. a directed cycle containing both a and b
- Breaks graph into components

Directed Acyclic Graphs

- If we collapse each SCC to a single vertex we get a directed graph with no cycles - a directed acyclic graph or DAG
- Many problems on directed graphs can be solved as follows:
- Compute SCC's and resulting DAG
- Do one computation on each SCC
- Do another computation on the overall DAG

Uses for SCC's

- Optimizing compilers:
- SCC's in the program flow graph = "loops"
- SCC's in call-graph = mutually recursive procedures
- Operating systems: If (u,v) means process u is waiting for process v, SCC's show deadlocks.
- Econometrics: SCC's might show highly interdependent sectors of the economy

Simple SCC Algorithm

- u, v in same SCC iff there are paths $u \rightarrow v \& v \rightarrow u$
- DFS from every $u, v: O(n m)=O\left(n^{3}\right)$

Better method

- Can compute all the SCC's while doing a single DFS! O(n+m) time
- We won't do the full algorithm but will give some ideas

Definition

The root of an SCC is the first vertex in it visited by DFS.

Equivalently, the root is the vertex in the SCC with the smallest number in DFS ordering.

Fact: All members of an SCC are descendants (via tree edges) of its root.

Subgoal

- Can we identify some root?
- How about the root of the first SCC completely explored by DFS?
- Key idea: no exit from first SCC (first SCC is leftmost "leaf" in collapsed DAG)

Definition

x is an exit from v (from v's subtree) if

- x is not a descendant of v, but
- x is the head of a (cross- or back-) edge from a descendant of v (including v itself)
- Any non-root vertex v has an exit

Finding SCC's

- Root nodes v sometimes have exits
- But only via a cross-edge to a node x that is not in a component with a root above v , e.g. vertex 10 in the example.

Non-Roots Have Exits
(Idea: on cycle back to root)

If v is not a root, then v has an exit.
Proof:

- let r be root of v's SCC
- r is a proper ancestor of v (Fact about roots)

First Root: Exit-less
(Idea: exit \rightarrow bigger cycle)

If r is the first root from which dfs returns, then r has no exit
Proof (by contradiction)

- Suppose x is an exit
- let x be the first vertex that is not a descendant of
- let z be root of x's SCC
v on a path $v \rightarrow r$
- r not reachable from z, else in same SCC
- x is an exit
- \#z $\leq \# x$ (z ancestor of x; Fact about roots)
- \#x < \#r (x is an exit from r)

Cor: If v has no exit, then v is a root.

- $\# z<\# r$, no $z \rightarrow r$ path, so return from z first

NB: converse not true; some roots do have exits

How to Find Exits

(from $1^{\text {st }}$ component)

- All exits x from v have \#x < \#v
- Suffices to find any of them, e.g. min \#
- Defn:

LOW(v) $=\min (\{\# x \mid x$ an exit from $v\} \cup\{\# v\}$

- Calculate inductively:

LOW $(v)=\min$ of:

- \#v
- \{ LOW(w) | w a child of v \}
- $\{\# x \mid(v, x)$ is a back- or cross-edge $\}$ -
- $1^{\text {st }}$ root : $\operatorname{LOW}(v)=\mathrm{v}$

Finding Other Components

- Key idea: No exit from
- $1^{\text {st }}$ SCC
- $2^{\text {nd }}$ SCC, except maybe to $1^{\text {st }}$
- $3^{\text {rd }}$ SCC, except maybe to $1^{\text {st }}$ and/or $2^{\text {nd }}$

If v is not a root, then v has an exit
Proof:

- let r be root of v 's SCC

- r is a proper ancestor of v (Fact about roots)
- let x be the first vertex that is not a descendant of \checkmark on a path $v \rightarrow$
- x is an exit in v's SCC

Cor: If v has no exit, then v is a root. in v's SCC 22

First Root: Exit-less
(Revisited) k^{k}

If r is the first root from which dfs returns, then
r has no exit
Proot

- S
- Suppose x is an exit except possibly to the first ($k-1$) components
- let z be root of X's SCC
- r not reachable from z, else in same SCC
- \#z $\leq \# x$ (z ancestor of x; Fact about roots)
- \#x $<\# r$ (x is an exit from r)
- \#z $<\# r$, no $z \rightarrow r$ path, so return from z first
- Tomitraction \longrightarrow i.e., x in first $(k-1)$

How to Find Exits (in x st $z^{\mathrm{k}^{\mathrm{m}}}$ component)

- All exits x from v have $\# x<\# v$
- Suffices to find any of them, e.g. min \#
- Defn:

LOW $(v)=\min (\{\# x \mid x$ an exit from $y\} \cup\{\# v\})$

- Calculate inductively:

LOW $(v)=$ min of:

- \#v
- $\{\operatorname{LOW}(w) \mid w$ a child of $v\}$
- $\{\# x \mid(v, x)$ is a back- or cross-edge $\}$

Complexity

- Look at every edge once
- Look at every vertex (except via inedge) at most once
- Time $=O(n+e)$

