
1

1

&6(�������$OJRULWKPV�
DQG�&RPSXWDWLRQDO�
&RPSOH[LW\

Winter 2001
DFS and Strongly Connected

Components

2

DFS(v) for a directed graph
1

2
10

9

8

3

4

5

6

7

11
12

13

3

DFS(v)
1

2
10

9

8

3

4

5

6

7

11
12

13

tree edges

back edges

forward
edges

← cross edges

NO → cross edges
4

Properties of Directed DFS

n Before DFS(v) returns, it visits all
previously unvisited vertices reachable
via directed paths from v

5

An Application:

G has a cycle ⇔ DFS finds a back edge
⇐ Clear.
⇒ Why can’t we have something like this?:

6

Strongly-connected
components

n In directed graph if there is a path from
a to b there might not be one from b to a

n a and b are strongly connected iff
there is a path in both directions (i.e. a
directed cycle containing both a and b

n Breaks graph into components

2

7

Strongly-connected
components

1

2
10

9

8

3

4

5

6

7

11
12

13

8

Uses for SCC’s

n Optimizing compilers:
n SCC’s in the program flow graph = "loops"

n SCC’s in call-graph = mutually recursive
procedures

n Operating systems: If (u,v) means process u
is waiting for process v, SCC’s show
deadlocks.

n Econometrics: SCC's might show highly
interdependent sectors of the economy

9

Directed Acyclic Graphs

n If we collapse each SCC to a single vertex we
get a directed graph with no cycles
n a directed acyclic graph or DAG

n Many problems on directed graphs can be
solved as follows:
n Compute SCC’s and resulting DAG

n Do one computation on each SCC

n Do another computation on the overall DAG

10

Simple SCC Algorithm

n u,v in same SCC iff there are
paths u → v & v → u

n DFS from every u, v: O(nm) = O(n3)

11

Better method

n Can compute all the SCC’s while doing
a single DFS! O(n+m) time

n We won’t do the full algorithm but will
give some ideas

12

Definition
The root of an SCC is the first vertex in it

visited by DFS.

Equivalently, the root is the vertex in the SCC
with the smallest number in DFS ordering.

Fact: All members of an SCC
are descendants (via tree
edges) of its root.

Exercise: show
that each SCC is
a contiguous
subtree.

3

13

Subgoal

n Can we identify some root?

n How about the root of the first SCC
completely explored by DFS?

n Key idea: no exit from first SCC
(first SCC is leftmost “leaf” in collapsed DAG)

14

Definition

x is an exit from v (from v’s subtree) if
n x is not a descendant of v, but
n x is the head of a (cross- or back-) edge

from a descendant of v (including v itself)

n Any non-root vertex v
has an exit

v
x

v
x

15

Finding SCC’s

n Root nodes v sometimes have exits
n But only via a cross-edge to a node x that

is not in a component with a root above v,
e.g. vertex 10 in the example.

16

Strongly-connected
components

1

2
10

9

8

3

4

5

6

7

11
12

13

root exits
1 1 -
2 2 -
3 3 -
4, 5 3 3
6 3 3, 5
7 3 5
8, 9 3 7
10 10 2, 8
11,12 10 10
13 13 -

17

Non-Roots Have Exits
(Idea: on cycle back to root)

If v is not a root, then v has an exit.
Proof:

n let r be root of v’s SCC

n r is a proper ancestor of v (Fact about roots)

n let x be the first vertex that is not a descendant of
v on a path v → r .

n x is an exit

Cor: If v has no exit, then v is a root.
NB: converse not true; some roots do have exits

r
v

x

18

First Root: Exit-less
(Idea: exit Í bigger cycle)

If r is the first root from which dfs returns, then r
has no exit

Proof (by contradiction):
n Suppose x is an exit
n let z be root of x’s SCC
n r not reachable from z, else in same SCC
n #z ≤ #x (z ancestor of x; Fact about roots)
n #x < #r (x is an exit from r)
n #z < #r, no z → r path, so return from z first
n Contradiction

r
x

z ?

4

19

n All exits x from v have #x < #v
n Suffices to find any of them, e.g. min #
n Defn:

LOW(v) = min({ #x | x an exit from v} ∪ {#v})
n Calculate inductively:

LOW(v) = min of:
n #v
n { LOW(w) | w a child of v }
n { #x | (v,x) is a back- or cross-edge }

n 1st root : LOW(v)=v

How to Find Exits
(from 1st component)

w1 w2 w3

x1

x2
v

20

1

2
10

9

8

3

4

5

6

7

11
12

13

root exits LOW
1 1 -
2 2 -
3 3 - 3
4, 5 3 3 3
6 3 3, 5 3
7 3 5 5
8, 9 3 7 7
10 10 2, 8
11, 12 10 10
13 13 -

1st root:
LOW(v)=v

21

Finding Other Components

n Key idea: No exit from
n 1st SCC
n 2nd SCC, except maybe to 1st

n 3rd SCC, except maybe to 1st and/or 2nd

n ...

22

Non-Roots Have Exits
(Revisited)

If v is not a root, then v has an exit .
Proof:

n let r be root of v’s SCC

n r is a proper ancestor of v (Fact about roots)

n let x be the first vertex that is not a descendant of
v on a path v → r .

n x is an exit

Cor: If v has no exit , then v is a root.

v

x

r

in v’s SCC

in v’s SCC

in v’s SCC

23

If r is the first root from which dfs returns, then
r has no exit

Proof:
n Suppose x is an exit
n let z be root of x’s SCC
n r not reachable from z, else in same SCC
n #z ≤ #x (z ancestor of x; Fact about roots)
n #x < #r (x is an exit from r)
n #z < #r, no z → r path, so return from z first
n Contradiction

except possibly
to the first (k-1)
components

First Root: Exit-less
(Revisited) kth

i.e., x in first (k-1)

r
x

z ?

24

How to Find Exits (in 1st

component)

n All exits x from v have #x < #v
n Suffices to find any of them, e.g. min #
n Defn:

LOW(v) = min({ #x | x an exit from v } ∪ {#v})
n Calculate inductively:

LOW(v) = min of:
n #v
n { LOW(w) | w a child of v }
n { #x | (v,x) is a back- or cross-edge }

kth

and x not in first
(k-1) components

5

25

SCC Algorithm
SCC(v)

#v = vertex_number++; v.low = #v; push(v)
for all edges (v,w)

if #w == 0 then
SCC(w); v.low = min(v.low, w.low) // tree edge

else if #w < #v && w.scc == 0 then
v.low = min(v.low, #w) // cross- or back-edge

if #v == v.low then // v is root of new scc
scc#++;
repeat

w = pop(); w.scc = scc#; // mark SCC members
until w==v

#v = DFS number
v.low = LOW(v)
v.scc = component #

26

1

2
10

9

8

3

4

5

6

7

11
12

13

root exits LOW
1 1 - 1
2 2 - 2
3 3 - 3
4, 5 3 3 3
6 3 3, 5 3
7 3 5 5
8, 9 3 7 7
10 10 2, 8 10
11, 12 10 10 10
13 13 - 13

27

Complexity

n Look at every edge once
n Look at every vertex (except via in-

edge) at most once

n Time = O(n+e)

28

Example

A

FE

CB D

1
2
3
4
5
6

dfs# v root exits low(v)

29

Example

v Low(v) v Low(v)

