

Representing Graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$
 n vertices, m edges
 - Adjacency List:

 $$
v_{n}-\sqrt{7}
$$

Advantages:
| Compact for sparse graphs

Representing Graph G=(V,E) n vertices, m edges

\|Vertex set $\mathrm{V}=\left\{\mathrm{v}_{1}, \ldots \mathrm{v}_{\mathrm{n}}\right\}$
| Adjacency Matrix A
\| $A[i, j]=1$ iff $\left(v_{i}, v_{j}\right) \in E$
$\|$ Space is n^{2} bits

- Advantages:
\| O(1) test for presence or absence of edges.
\| compact in packed binary form for large m
- Disadvantages: inefficient for sparse graphs

Undirected Graph $G=(\mathrm{V}, \mathrm{E})$

Representing Graph G=(V,E) n vertices, medges

- Adjacency List:
\| $\mathrm{O}(\mathrm{n}+\mathrm{m})$ words
\| $O(\log n)$ bits each

1 Back- and cross pointers more work to build, but allow easier traversal and deletion of edges
\| usually assume this format

Graph Traversal

II Learn the basic structure of a graph

- Walk from a fixed starting vertex v to find all vertices reachable from v
\| Three states of vertices
I undiscovered
discovered
| fully-explored

Breadth-First Search

- Completely explore the vertices in order of their distance from v
. Naturally implemented using a queue

BFS(v)

Global initialization: mark all vertices "undiscovered" BFS(v)
mark v "discovered"
queue $=v$
while queue not empty
$u=$ remove_first(queue)
for each edge $\{u, x\}$ if (x is undiscovered) mark x discovered append x on queue

Exercise: modify code to number vertices \& compute level numbers

BFS analysis

Each edge is explored once from each end-point (at most)

- Each vertex is discovered by following a different edge
- Total cost $\mathrm{O}(\mathrm{m})$ where $\mathrm{m}=\#$ of edges

Properties of (Undirected) BFS(v)

|. BFS(v) visits x if and only if there is a path in G from v to x.
| Edges into then-undiscovered vertices define a tree - the "breadth first spanning tree" of G

- Level i in this tree are exactly those vertices u such that the shortest path (in G , not just the tree) from the root v is of length i.
II All non-tree edges join vertices on the same or adjacent levels

Graph Search Application: Connected Components

```
```

|| initial state: all v undiscovered

```
```

|| initial state: all v undiscovered
for v=1 to n do
for v=1 to n do
if state(v)!=fully-explored then
if state(v)!=fully-explored then
BFS(v): setting A[u] \leftarrowv for each u found
BFS(v): setting A[u] \leftarrowv for each u found
BFS(v): setting A[u]\leftarrowv for each u found
BFS(v): setting A[u]\leftarrowv for each u found
endif
endif
endfor
endfor
Total cost: O(n+m)
Total cost: O(n+m)
| each vertex an each edge is touched a constant
| each vertex an each edge is touched a constant
number of times
number of times
| works also with DFS

```
```

 | works also with DFS
    ```
```

 22

Graph Search Application: Connected Components

|. Want to answer questions of the form:
I given vertices u and v, is there a path from u to v ?

II Idea: create array A such that $A[u]=$ smallest numbered vertex that is connected to u
\| question reduces to whether $\mathrm{A}[\mathrm{u}]=\mathrm{A}[\mathrm{v}]$?

Depth-First Search

| Follow the first path you find as far as you can go

- Back up to last unexplored edge when you reach a dead end, then go as far you can
\| Naturally implemented using recursive calls or a stack

Properties of (Undirected) DFS(v)

- Like BFS(v):

DFS(v) visits x if and only if there is a path in G from v to x (through previously unvisited vertices)
Edges into then-undiscovered vertices define a tree the "depth first spanning tree" of G

- Unlike the BFS tree:

I the DF spanning tree isn't minimum depth
I its levels don't reflect min distance from the root I non-tree edges never join vertices on the same or adjacent levels
BUT...

Application: Articulation Points

A node in an undirected graph is an articulation point iff removing it disconnects the graph
articulation points represent vulnerabilities in a network - single points whose failure would split the network into 2 or more disconnected components

Articulation Points

Articulation Points from DFS

- Every interior vertex of a tree is an articulation point
| Non-tree edges eliminate articulation points
\| Root node is an articulation point iff it has more than one child

| non-leaf, non-root
 node u is an
 articulation point |
| :--- |\Leftrightarrow| no non-tree edge goes |
| :--- |
| above u from a sub-tree |
| below some child of u |

Articulation Points:
 the "LOW" function

- Definition: LOW(v) is the lowest dfs\# of any vertex that is either in the dfs subtree rooted at v (including v itself) or connected to a vertex in that subtree by a back edge.
- Key idea 1: if some child x of v has LOW $(x) \geq$ dfs\#(v) then v is an articulation point.
- Key idea 2: $\operatorname{LOW}(\mathrm{v})=$ $\min (\{\operatorname{LOW}(w) \mid w$ a child of $v\} \cup$
$\{d f s \#(x) \mid\{v, x\}$ is a back edge from $v\})$

DFS(v) for
 Finding Articulation Points

```
Global initialization: v.dfs# = -1 for all v.
DFS(v)
v.dfs# = dfscounter++
v.low = v.dfs# // initialization
for each edge {v,x}
    if (x.dfs# == -1)
        DFS(x)
        v.low = min(v.low, x.low)
        if (x.low >= v.dfs#)
            print "v is art. pt., separating x" Equiv: "if( {v,x}
        else if (x is not v's parent) «
        v.low = min(v.low, x.dfs#) Why?
```


