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Undirected Graph G = (V,E)
1

2
10

9

8

3

4

5

6

7

11
12

13

3

Directed Graph G = (V,E)
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Representing Graph  G=(V,E)
n vertices,  m edges

❚ Vertex set V={v1,...vn}
❚ Adjacency Matrix   A

❙ A[i,j]=1 iff (vi,vj)∈E
❙ Space is n2 bits

❚ Advantages: 
❙ O(1) test for presence or absence of edges.
❙ compact in packed binary form for large m

❚ Disadvantages: inefficient for sparse graphs
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Representing Graph  G=(V,E)
n vertices,  m edges

❚ Adjacency List:
❙ O(n+m) words
❙ O(log n) bits each

❚ Advantages:
❙ Compact for sparse graphs
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Representing Graph  G=(V,E)
n vertices,  medges

❚ Adjacency List:
❙ O(n+m) words
❙ O(log n) bits each

❚ Back- and cross pointers more work to build, but 
allow easier traversal and deletion of edges
❙ usually assume this format

v1

v2

v3

v1

vn

2 4 7

1 3

52

7

6



2

7

Graph Traversal

❚ Learn the basic structure of a graph
❚ Walk from a fixed starting vertex v to find 

all vertices reachable from v

❚ Three states of vertices
❙ undiscovered
❙ discovered
❙ fully-explored
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Breadth-First Search

❚ Completely explore the vertices in order of 
their distance from v

❚ Naturally implemented using a queue
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BFS(v)

Global initialization: mark all vertices "undiscovered"
BFS(v) 

mark  v "discovered"
queue = v
while queue not empty

u = remove_first(queue)
for each edge {u,x}

if (x is undiscovered) 
mark x discovered
append x on queue

mark u completed

Exercise: modify 
code to number 
vertices & compute 
level numbers
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BFS(v)
1

2
3

10

5

4

9

12

8

13

6
7

11

11

BFS(v)
1

2
3

10

5

4

9

12

8

13

6
7

11

Queue:
1  

12

BFS(v)
1

2
3

10

5

4

9

12

8

13

6
7

11

Queue:
2 3  



3

13

BFS(v)
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BFS(v)
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BFS(v)
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BFS analysis

❚ Each edge is explored once from each 
end-point (at most)

❚ Each vertex is discovered by following a 
different edge

❚ Total cost O(m) where m=# of edges

20

Properties of (Undirected) BFS(v)

❚ BFS(v) visits x if and only if there is a path in G 
from v to x.

❚ Edges into then-undiscovered vertices define a 
tree – the "breadth first spanning tree" of G

❚ Level i in this tree are exactly those vertices u 
such that the shortest path (in G, not just the tree) from 
the root v is of length i.

❚ All non-tree edges join vertices on the same or 
adjacent levels
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Graph Search Application: 
Connected Components

❚ Want to answer questions of the form:
❙ given vertices u and v, is there a 

path from u to v?

❚ Idea: create array A such that                  
A[u] = smallest numbered vertex 

that is connected to u
❚ question reduces to whether A[u]=A[v]?

Q: Why 
not create 
2-d array 
Path[u,v]?
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Graph Search Application: 
Connected Components

❚ initial state: all v undiscovered
for v=1 to n do

if state(v)!=fully-explored then
BFS(v): setting A[u] ←v for each u found 
(and marking u discovered/fully-explored)         

endif                                                           
endfor

❚ Total cost: O(n+m)
❙ each vertex an each edge is touched a constant 

number of times
❙ works also with DFS
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BFS Application: Shortest Paths
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Depth-First Search

❚ Follow the first path you find as far as you 
can go

❚ Back up to last unexplored edge when you 
reach a dead end, then go as far you can 

❚ Naturally implemented using recursive 
calls or a stack
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DFS(v)

Global Initialization: mark all vertices "undiscovered"
DFS(v) 

mark  v "discovered"
stack = v
while stack not empty

u = pop(stack)
for each edge {u,x}

if (x is undiscovered) 
mark x discovered
push x

mark u completed

Exercise1: recode 
recursively

Exercise 2: modify to 
compute vertex 
numbering
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DFS(v) – Recursive version

Global Initialization: 
mark all vertices v "undiscovered” via v.dfs# = -1
dfscounter = 0

DFS(v) 
v.dfs# = dfscounter++ // mark  v “discovered”
for each edge (v,x)

if (x.dfs# = -1) // tree edge (x previously  undiscovered)

DFS(x)
else … // code for back-, fwd-, parent,

// edges, if needed
// mark v “completed,” if needed

27

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13

28

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13

29

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13

1

30

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13

2
1



6

31

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13 3
2
1

32

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13
4
3
2
1

33

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13

5
4
3
2
1

34

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13

6
5
4
3
2
1

35

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13

5
4
3
2
1

36

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13
4
3
2
1



7

37

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13 3
2
1

38

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13

2
1

39

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13 3 
2
1

40

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13
8
3 
2
1

41

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13 3 
2
1

42

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13
8
3 
2
1



8

43
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Properties of (Undirected) DFS(v)

❚ Like BFS(v):
❙ DFS(v) visits x if and only if there is a path in G from 

v to x (through previously unvisited vertices)

❙ Edges into then-undiscovered vertices define a tree –
the "depth first spanning tree" of G

❚ Unlike the BFS tree: 
❙ the DF spanning tree isn't minimum depth
❙ its levels don't reflect min distance from the root
❙ non-tree edges never join vertices on the same or 

adjacent levels

❚ BUT…
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Non-tree edges

❚ All non-tree edges join a vertex and one of 
its descendents/ancestors in the DFS tree

❚ No cross edges!
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Application: Articulation Points

❚ A node in an undirected graph is an 
articulation point iff removing it 
disconnects the graph

❚ articulation points represent vulnerabilities 
in a network – single points whose failure 
would split the network into 2 or more 
disconnected components
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Articulation Points
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Brainstorming

❚ draw a graph, ~ 10 nodes, A-J
❚ redraw as via DFS
❚ add dsf#s & tree/back edges (solid/dashed) 
❚ find cycles
❚ give alg to find cycles via dfs; does G have any?

❚ find articulation points
❚ what do cycles have to do with articulation 

points?
❚ alg to find articulation points via DFS???
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Articulation Points from DFS

❚ Every interior vertex of a tree is an articulation 
point
❙ Non-tree edges eliminate articulation points

❚ Root node is an articulation point iff it has more 
than one child

no non-tree edge goes 
above u from a sub-tree 
below some child of u

non-leaf, non-root
node u is an 
articulation point

⇔
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Articulation Points from DFS

❚ Root node is an articulation point 
iff it has more than one child

❚ Leaf is never an articulation point
❚

no non-tree edge goes 
above u from a sub-tree 
below some child of u

non-leaf, non-root
node u is an 
articulation point⇔

u
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Articulation Points:
the "LOW" function

❚ Definition:  LOW(v) is the lowest dfs# of any 
vertex that is either in the dfs subtree rooted at v 
(including v itself) or connected to a vertex in 
that subtree by a back edge.

❚ Key idea 1: if some child x of v has LOW(x) ≥
dfs#(v) then v is an articulation point.

❚ Key idea 2: LOW(v) =
min ( {LOW(w) | w a child of v } ∪

{ dfs#(x) | {v,x} is a back edge from v } )

triv
ial
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DFS(v) for
Finding Articulation Points

Global initialization: v.dfs# = -1 for all v.
DFS(v) 
v.dfs# = dfscounter++
v.low = v.dfs# // initialization
for each edge {v,x}

if (x.dfs# == -1) // x is undiscovered
DFS(x)
v.low = min(v.low, x.low)
if (x.low >= v.dfs#)

print “v is art. pt., separating x”
else if (x is not v’s parent)

v.low = min(v.low, x.dfs#)

Equiv: “if( {v,x} 
is a back edge)”
Why?

E
xcept for root.  W

hy?
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Articulation Points
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2 Vertex DFS # Low
A 1 1
B 2 1
C 3 1
D 4 3
E 8 1
F 5 3
G 9 9
H 10 1
I 6 3
J 11 10
K 7 3
L 12 10
M 13 13


