
1

1

&6(�������$OJRULWKPV�DQG�
&RPSXWDWLRQDO�&RPSOH[LW\

���'\QDPLF�3URJUDPPLQJ��,,,
/RQJHVW�,QFUHDVLQJ�6XEVHT��

Winter 2002
Instructor: W. L. Ruzzo

2

Three Steps to
Dynamic Programming

❚ Formulate the answer as a recurrence relation
or recursive algorithm

❚ Show that number of different parameters in the
recursive algorithm is "small" (e.g., bounded by
a low-degree polynomial)

❚ Specify an order of evaluation for the recurrence
so that already have the partial results ready
when you need them.

3

Longest Increasing
Subsequence

❚ Given a sequence of integers s1,...,sn find a
subsequence si1

< si2
<...< sik

with i1<...<ik so
that k is as large as possible.

❚ e.g. Given 9,5,2,8,7,3,1,6,4 as input,
❙ possible increasing subsequence is 5,7

❙ better is 2,3,6 or 2,3,4 (either or which would be a
correct output to our problem)

4

Find recursive algorithm

❚ Solve sub-problem on s1,...,sn-1 and then
try to extend using sn

❚ Two cases:
❙ Sn is not used

❘ answer is the same answer as on s1,...,sn-1

❙ sn is used
❘ answer is sn preceded by the longest increasing

subsequence in s1,...,sn-1 that ends in a number
smaller than sn

5

Refined recursive idea
(stronger notion of subproblem)

❚ Suppose that we knew for each i<n the longest
increasing subsequence in s1,...,sn that ends in
si.
❙ i=n-1 is just the n-1 size sub-problem we tried before.

❚ Now to compute value for i=n find
❙ sn preceded by the maximum over all i<n such that

si<sn of the longest increasing subsequence ending
in si

❚ First find the best length rather than trying to actually
compute the sequence itself.

6

Recurrence

❚ Let L[i]=length of longest increasing
subsequence in s1,...,sn that ends in si.

❚ L[j]=1+max{L[i] : i<j and si<sj}
(where max of an empty set is 0)

❚ Length of longest increasing subsequence:
❙ max{L[i]: 1≤ i ≤ n}

2

7

Computing the actual sequence

❚ For each j, we computed
L[j]=1+max{L[i] : i<j and si<sj}

(where max of an empty set is 0)
❚ Also maintain P[j] the value of the i that

achieved that max
❙ this will be the index of the predecessor of sj in a

longest increasing subsequence that ends in sj

❙ by following the P[j] values we can reconstruct the
whole sequence in linear time.

8

Longest Increasing
Subsequence Algorithm

❚ for j=1 to n do
L[j]←1
P[j]←0
for i=1 to j-1 do

if (si<sj & L[i]+1>L[j]) then
P[j] ←i
L[j] ←L[i]+1

endfor
endfor

❚ Now find j such that L[j] is largest and walk backwards
through P[j] pointers to find the sequence

9

Example

1 2 3 4 5 6 7 8 9i

si

li

pi

10

Example

1 2 3 4 5 6 7 8 9

90 50 20 80 70 30 10 60 40

i

si

li

pi

