

5: Dynamic Programming, II Linear Partition

> Winter 2002 W. L. Ruzzo

Dynamic Programming

Useful when

- same recursive sub-problems occur repeatedly
- Can anticipate the parameters of these recursive calls
- The solution to whole problem can be figured out with knowing the internal details of how the sub-problems are solved
 principle of optimality
- principie er optimum

List partition problem

- Given: a sequence of n positive integers s₁,...,s_n and a positive integer k
- Find: a partition of the list into up to k blocks:

 $s_1,...,s_{i_1}|s_{i_1+1}...s_{i_2}|s_{i_2+1}...s_{i_{k-1}}|s_{i_{k-1}+1}...s_n$ so that the sum of the numbers in the largest block is as small as possible. i.e. find spots for up to k-1 dividers

Linear Partition Algorithm		
$\begin{array}{l} \text{Partition(S,k):} \\ p[0] \leftarrow 0; \text{ for } i=1 \text{ to } n \text{ do } p[i] \leftarrow p[i-1] + s_i \\ \text{ for } i=1 \text{ to } n \text{ do } M[i,1] \leftarrow p[i] \\ \text{ for } j=1 \text{ to } k \text{ do } M[1,j] \leftarrow s_1 \\ \text{ for } i=2 \text{ to } n \text{ do} \\ \text{ for } j=2 \text{ to } k \text{ do} \\ \hline \text{ minimized for } for pos=1 \text{ to } i-1 \text{ do} \\ s \leftarrow max(M[pos,j-1], p[i] - p[pos]) \\ \text{ if } M[i,j] \leftarrow s \text{ ; } D[i,j] \leftarrow pos \end{array}$		
9	9	L

Example			
	1	2	3
100			
200			
400			
500			
900			
700			
600			
800			
600			10

Example	Example:					
	1	2	3			
100	100	100	100			
200	300					
400	700					
500	1200					
900	2100					
700	2800					
600	3400					
800	4200					
600	4800		11			

Example:					
	1	2	3		
100	100	100	100		
200	300	200	200		
400	700	400	400		
500	1200	700	500		
900	2100	1200	900		
700	2800	1600	1400		
600	3400	2100			
800	4200	2100			
600	4800	2700	12		