CSE 417: Algorithms and Computational Complexity

5: Dynamic Programming, II Linear Partition

Winter 2002
W. L. Ruzzo

Dynamic Programming

- Useful when
|| same recursive sub-problems occur repeatedly
\| Can anticipate the parameters of these recursive calls
\| The solution to whole problem can be figured out with knowing the internal details of how the sub-problems are solved principle of optimality

List partition problem

- Given: a sequence of n positive integers $\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{n}}$ and a positive integer k
|. Find: a partition of the list into up to k blocks:
$\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{i}_{1}}\left|\mathrm{~s}_{\mathrm{i}_{1}+1} \ldots \mathrm{~s}_{\mathrm{i}_{2}}\right| \mathrm{s}_{\mathrm{i}_{2}+1} \ldots \mathrm{~s}_{\mathrm{i}_{k-1}} \mid \mathrm{s}_{\mathrm{i}_{\mathrm{k}-1}+1} \ldots \mathrm{~s}_{\mathrm{n}}$ so that the sum of the numbers in the largest block is as small as possible. i.e. find spots for up to $k-1$ dividers

Greedy approach

|| Ideal size would be $P=\quad \sum_{i=1}^{n} s_{i} / k$

- Greedy: walk along until what you have so far adds up to P then insert a divider
- Problem: it may not exact (or correct)

100200400500900700600800600
\| sum is 4800 so size must be at least 1600.
\| Greedy? Best?

Recursive solution

- Try all possible values for the position of the last divider
- For each position of this last divider
\| there are k-2 other dividers that must divide the list of numbers prior to the last divider as evenly as possible
|| recursive sub-problem of the same type

Recursive idea

\| Let $\mathrm{M}[\mathrm{n}, \mathrm{k}]$ the smallest cost (size of largest block) of any partition of the n into k pieces.

- If best position for last divider lies between the
$\mathrm{i}^{\text {th }}$ and $\mathrm{i}+1^{\text {st }}$ then
$M[n, k]=\max \left(M[i, k-1], \sum_{j=i+1}^{n} s_{j}\right)$
$\|$ In general
$M[n, k]=\min _{i<n} \max \left(M[i, k-1], \sum_{j=i+1}^{n} s_{j}\right)$
Base case(s)?

Time-saving - prefix sums

I. Computing the costs of the blocks may be expensive and involved repeated work
Idea: Pre-compute prefix sums
Length of block

$$
\mathrm{s}_{\mathrm{i}+1}+\ldots+\mathrm{s}_{\mathrm{j}}
$$

is just
p[j]-p[i]
(I Cost: n additions

$$
\begin{aligned}
& \mathrm{p}[1]=\mathrm{s}_{1} \\
& \mathrm{p}[2]=\mathrm{s}_{1}+\mathrm{s}_{2} \\
& \mathrm{p}[3]=\mathrm{s}_{1}+\mathrm{s}_{2}+\mathrm{s}_{3} \\
& \ldots \\
& \mathrm{p}[\mathrm{n}]=\mathrm{s}_{1}+\mathrm{s}_{2}+\ldots+\mathrm{s}_{\mathrm{n}}
\end{aligned}
$$

Linear Partition Algorithm

```
Partition(S,k):
    p[0]\leftarrow0;
    for i=1 to n do p[i] \leftarrowp[i-1]+\mp@subsup{S}{i}{}
    for i=1 to n do M[i,1] \leftarrowp[i]
    for j=1 to k do M[1,j]}\leftarrow\mp@subsup{\textrm{s}}{1}{
    for i=2 to n do
        for j=2 to k do
            M[i,j]}\leftarrow\mp@subsup{\operatorname{min}}{\mathrm{ pos<il}}{}{\operatorname{max}(M[pos,j-1],p[i]-p[pos])
            D[i,j]}\leftarrow\mathrm{ value of pos where min is achieved
```


Linear Partition Algorithm

Partition(S,k):
$\mathrm{p}[0] \leftarrow 0$; for $\mathrm{i}=1$ to n do $\mathrm{p}[\mathrm{i}] \leftarrow \mathrm{p}[\mathrm{i}-1]+\mathrm{s}_{\mathrm{i}}$
for $i=1$ to n do $M[i, 1] \leftarrow p[i]$
for $\mathrm{j}=1$ to k do $\mathrm{M}[1, \mathrm{j}] \leftarrow \mathrm{s}_{1}$
for $\mathrm{i}=2$ to n do
for $\mathrm{j}=2$ to k do
$M[i, j] \leftarrow \infty$
for pos=1 to $\mathrm{i}-1$ do $s \leftarrow \max (M[p o s, j-1], p[i]-p[p o s])$ if $M[i, j] s$ then
$M[i, j] \leftarrow s ; D[i, j] \leftarrow$ pos

Example:			
1 $\mathbf{2}$ 100 200 400 500 900 700 600 800 600			

Example:					
	1		2		3
100	100	100		100	
200	300				
400	700				
500	1200				
900	2100				
700	2800				
600	3400				
800	4200				
600	4800				${ }_{11}$

Example:				
				3
100	100	100	100	
200	300	200	200	
400	700	400	400	
500	1200	700	500	
900	2100	1200	900	
700	2800	1600	1400	
600	3400	2100		
800	4200	2100		
600	4800	2700		12

