
1

1

&6(�������$OJRULWKPV�DQG�
&RPSXWDWLRQDO�&RPSOH[LW\

5: Dynamic Programming, II
Linear Partition

Winter 2002
W. L. Ruzzo

2

Dynamic Programming

❚ Useful when
❙ same recursive sub-problems occur

repeatedly
❙ Can anticipate the parameters of these

recursive calls
❙ The solution to whole problem can be figured

out with knowing the internal details of how
the sub-problems are solved
❘ principle of optimality

3

List partition problem

❚ Given: a sequence of n positive integers
s1,...,sn and a positive integer k

❚ Find: a partition of the list into up to k
blocks:
s1,...,si1

|si1+1...si2
|si2+1... sik-1

|sik-1+1...sn

so that the sum of the numbers in the
largest block is as small as possible.
i.e. find spots for up to k-1 dividers

4

Greedy approach

❚ Ideal size would be P=

❚ Greedy: walk along until what you have so far
adds up to P then insert a divider

❚ Problem: it may not exact (or correct)

100 200 400 500 900 700 600 800 600

❙ sum is 4800 so size must be at least 1600.
❙ Greedy? Best?

∑
n

i
i=1

s /k

5

Recursive solution

❚ Try all possible values for the position of
the last divider

❚ For each position of this last divider
❙ there are k-2 other dividers that must divide

the list of numbers prior to the last divider as
evenly as possible
❘ s1,...,si1

|si1+1...si2
|si2+1... sik-1

|sik-1+1...sn

❙ recursive sub-problem of the same type

6

Recursive idea

❚ Let M[n,k] the smallest cost (size of largest
block) of any partition of the n into k pieces.

❚ If best position for last divider lies between the

ith and i+1st then

M[n,k]= max (M[i,k-1] ,)

❚ In general

M[n,k]= mini<n max (M[i,k-1] ,)

❚ Base case(s)?

∑
n

j
j=i+1

s

∑
n

j
j=i+1

s

cost of last block

max cost of 1st k-1 blocks

2

7

Time-saving - prefix sums

❚ Computing the costs of the blocks may be
expensive and involved repeated work

❚ Idea: Pre-compute prefix sums
❚ Length of block

si+1+... + sj

is just

p[j]-p[i]

❚ Cost: n additions

p[1]=s1

p[2]=s1+s2

p[3]=s1+s2+s3

...
p[n]=s1+s2+...+sn

8

Linear Partition Algorithm

Partition(S,k):
p[0]←0;
for i=1 to n do p[i] ←p[i-1]+si
for i=1 to n do M[i,1] ←p[i]
for j=1 to k do M[1,j] ← s1
for i=2 to n do

for j=2 to k do
M[i,j] ← minpos<i{max(M[pos,j-1], p[i]-p[pos])}
D[i,j] ← value of pos where min is achieved

9

Linear Partition Algorithm

Partition(S,k):
p[0]←0; for i=1 to n do p[i] ←p[i-1]+si
for i=1 to n do M[i,1] ←p[i]
for j=1 to k do M[1,j] ← s1
for i=2 to n do

for j=2 to k do
M[i,j]←∞
for pos=1 to i-1 do

s←max(M[pos,j-1], p[i]-p[pos])
if M[i,j]>s then

M[i,j] ←s ; D[i,j] ←pos
10

Example:

600
800
600
700
900
500
400
200
100

321

11

Example:

4800600
4200800
3400600
2800700
2100900
1200500
700400
300200

100100100100
321

12

Example:

27004800600
21004200800
21003400600

140016002800700
90012002100900
5007001200500
400400700400
200200300200
100100100100

321

