CSE 417: Algorithms and
Computational Complexity

5: Dynamic Programming, Il
Linear Partition

Winter 2002
W. L. Ruzzo

Dynamic Programming

Useful when
same recursive sub-problems occur
repeatedly
Can anticipate the parameters of these
recursive calls
The solution to whole problem can be figured
out with knowing the internal details of how
the sub-problems are solved

principle of optimality

List partition problem

Given: a sequence of n positive integers
S,....,S, and a positive integer k

Find: a partition of the list into up to k
blocks:

S1see0sSi IS s1e--Si,ISiea-+ Siy,y [Siy,+1--Sn
so that the sum of the numbers in the
largest block is as small as possible.
i.e. find spots for up to k-1 dividers

3

Greedy approach

n

Ideal size would be P= Zs,/k

Greedy: walk along until what you have so far
adds up to P then insert a divider

Problem: it may not exact (or correct)
100 200 400 500 900 700 600 800 600

sum is 4800 so size must be at least 1600.
Greedy? Best?

Recursive solution

Try all possible values for the position of
the last divider
For each position of this last divider

there are k-2 other dividers that must divide
the list of numbers prior to the last divider as
evenly as possible

recursive sub-problem of the same type

Recursive idea

Let M[n,k] the smallest cost (size of largest
block) of any partition of the n into k pieces.

If best position for last divider lies between the

ith and i+1st then max cost of 1st k-1 blocks
a cost of last block
M[n,k]= max (M[i,k-1] , ZSJ)
In general b)
M[n,k]= min,., max (M[i,k-1] , lej)
=

Base case(s)?

Time-saving - prefix sums

Computing the costs of the blocks may be
expensive and involved repeated work

Idea: Pre-compute prefix sums —

Length of block pIL]=s
-1
St *§ p[2]=s;*s;
is just P[3]=s ts,tsy
plil-p(i]
Cost: n additions b“[n]zlerszJr +s
s,

7

Linear Partition Algorithm

Partition(S,k):

p[0] - O;

fori=1to ndo p[i] —p[i-1]+s;

for i=1to ndo M[i,1] —pli]

forj=1to kdo M[1,j] « s;

fori=2to ndo

forj=2to kdo

M[i,j] « ming,s{max(M[pos,j-1], p[i]-p[pos])}
D[i,j] — value of pos where min is achieved

Linear Partition Algorithm

Partition(S,k):
p[0] - O; for i=1 to n do p[i] - pli-1}+s;
fori=1to ndo M[i,1] - p[i]
forj=1to kdo M[1,j] — s,
fori=2to ndo
for j=2to kdo
MIi,j] — 0
for pos=1toi-1do
s — max(M[pos,j-1], p[il-p[pos])
if M[i,j]>s then
M[i,j] —s; D[] —pos

Example:

100(100 100 100

200|300

400|700

500(1200

9001|2100

7001|2800

600|3400

8001|4200

600|4800 .

Example:
1 2 3
100
200
400
500
900
700
600
800
600 .
Example:
1 2 3
100[100 100 100
200|300 200 200
400(700 400 400
500(1200 700 500
900(2100 1200 900
700|2800 1600 1400
600|3400 2100
800(4200 2100
600|4800 2700 .

