
1

1

&6(�������$OJRULWKPV�DQG�
&RPSXWDWLRQDO�&RPSOH[LW\

���'\QDPLF�3URJUDPPLQJ��,
)LERQDFFL

Winter 2002
Lecture 4

W. L. Ruzzo

2

A Possible Misunderstanding?

❚ We have looked at
❙ type of complexity analysis

❘ worst-, best-, average-case

❙ types of function bounds
❘ O, Ω, Θ

❚ These two considerations are independent
of each other
❙ one can do any type of function bound with

any type of complexity analysis

Insertion Sort:

Ω(n2) (worst case)

O(n) (best case)

3

Another Possible
Misunderstanding?

❚ Insertion sort is not the best sorting
algorithm, unless n is < 10 or 20.

4

Some Algorithm Design
Techniques, I

❚ General overall idea
❙ Reduce solving a problem to a smaller problem or

problems of the same type

❚ Greedy algorithms
❙ Used when one needs to build something a piece at

a time
❙ Repeatedly make the greedy choice - the one that

looks the best right away
• e.g. closest pair in TSP search

❙ Usually fast if they work (but often don’t)

5

Some Algorithm Design
Techniques, II

❚ Divide & Conquer
❙ Reduce problem to one or more sub-problems of the

same type

❙ Typically, each sub-problem is at most a constant
fraction of the size of the original problem

❘ e.g. Mergesort, Binary Search, Strassen’s Algorithm,
Quicksort (kind of)

6

Some Algorithm Design
Techniques, III

❚ Dynamic Programming
❙ Give a solution of a problem using smaller

sub-problems, e.g. a recursive solution
❙ Useful when the same sub-problems show up

again and again in the solution

2

7

A simple case:
Computing Fibonacci Numbers

❚ Recall Fn=Fn-1+Fn-2 and F0=0, F1=1

❚ Recursive algorithm:
❙ Fibo(n)

if n=0 then return(0)
else if n=1 then return(1)
else return(Fibo(n-1)+Fibo(n-2))

8

Call tree - start

F (6)

F (5) F (4)

F (3)

F (4)

F (2)

F (2)

F (3)

F (1) F (0)

1 0

F (1)

9

Full call tree

F (6)

F (2)

F (5) F (4)

F (3)

F (4)

F (2)

F (2)

F (3)F (3)

F (1) F (0)

1 0

F (0)

01

F (1)

F (1) F (0)

1 0
F (1)

F (2) F (1)

1
F (0)

1 0

F (2) F (1)

1
F (0)

1 0

F (1)

1

F (1)

10

Memo-ization (Caching)

❚ Remember all values from previous
recursive calls

❚ Before recursive call, test to see if value
has already been computed

❚ Dynamic Programming
❙ Convert memo-ized algorithm from a

recursive one to an iterative one

11

Fibonacci - Dynamic
Programming Version

❚ FiboDP(n):
F[0]←0
F[1] ←1
for i=2 to n do

F[i]=F[i-1]+F[i-1]
endfor
return(F[n])

12

Dynamic Programming

❚ Useful when
❙ same recursive sub-problems occur

repeatedly
❙ Can anticipate the parameters of these

recursive calls
❙ The solution to whole problem can be figured

out with knowing the internal details of how
the sub-problems are solved
❘ principle of optimality

3

13

List partition problem

❚ Given: a sequence of n positive integers
s1,...,sn and a positive integer k

❚ Find: a partition of the list into up to k
blocks:
s1,...,si1

|si1+1...si2
|si2+1... sik-1

|sik-1+1...sn

so that the sum of the numbers in the
largest block is as small as possible.
i.e. find spots for up to k-1 dividers

14

Greedy approach

❚ Ideal size would be P=

❚ Greedy: walk along until what you have so far
adds up to P then insert a divider

❚ Problem: it may not exact (or correct)

100 200 400 500 900 700 600 800 600

❙ sum is 4800 so size must be at least 1600.
❙ Greedy? Best?

∑
n

i
i=1

s /k

