CSE 417: Algorithms and Computational Complexity

3: Complexity (cont.)

Winter 2002
W. L. Ruzzo

Example

\| Mergesort
II on a problem of size at least 2
Sort the first half of the numbers
Sort the second half of the numbers
Merge the two sorted lists
II on a problem of size 1 do nothing

O-notation etc

II Given two functions f and $g: N \rightarrow R$
If(n) is $\mathrm{O}(\mathbf{g}(\mathbf{n})$) iff there is a constant $\mathbf{c}>0$ so that $\mathbf{c} \mathbf{g (n)}$ is eventually always $\geq \mathbf{f}(\mathbf{n})$
$\mathbf{f}(\mathbf{n})$ is $\Omega(\mathbf{g}(\mathbf{n})$) iff there is a constant $\mathbf{c}>0$ so that $\mathbf{c} \mathbf{g}(\mathbf{n})$ is eventually always $\leq \mathbf{f}(\mathbf{n})$
$\mathbf{f}(\mathbf{n})$ is $\Theta\left(\mathbf{g}(\mathbf{n})\right.$) iff there is are constants \mathbf{c}_{1} and $\mathbf{c}_{2}>0$ so that eventually always $\mathbf{c}_{1} \mathbf{g}(\mathbf{n}) \leq \mathbf{f}(\mathbf{n}) \leq \mathbf{c}_{\mathbf{2}} \mathbf{g}(\mathbf{n})$

Cost of Merge

- Given two lists to merge size n and m
| Maintain pointer to head of each list
\| Move smaller element to output and advance pointer
[मा"
प प——— m

Worst case $n+m-1$ comparisons
Best case min(n,m) comparisons

Recurrence relation for Mergesort

II In total including other operations let's say each merge costs 3 per element output
|| $T(n)=T([n / 27)+T(L n / 2\rfloor)+3 n$ for $n \geq 2$
|| $\mathrm{T}(1)=1$

- Can use this to figure out T for any value of n
\| $T(5)=T(3)+T(2)+3 \times 5$
$=(\mathrm{T}(2)+\mathrm{T}(1)+3 \times 3)+(\mathrm{T}(1)+\mathrm{T}(1)+3 \times 2)+15$
$=((T(1)+T(1)+6)+1+9)+(1+1+6)+15$
$=8+10+8+15=41$

Insertion Sort

|. For $\mathrm{i}=2$ to n do $j \leftarrow i$
while($j>1$ \& $X[j]>X[j-1])$ do swap $X[j]$ and $X[j-1]$

II i.e., For $\mathrm{i}=2$ to n do Insert $\mathrm{X}[i]$ in the sorted list $\mathrm{X}[1], \ldots, \mathrm{X}[i-1]$

Recurrence relation for Insertion Sort

- Let $\mathbf{T}(\mathbf{n}, \mathbf{i})$ be the worst case cost of creating list that has first \mathbf{i} elements sorted out of \mathbf{n}. II We want $\mathbf{T}(\mathbf{n}, \mathbf{n})$
- The insertion of $\mathbf{X}[\mathbf{i}]$ makes up to $\mathbf{i - 1}$ comparisons in the worst case
|| $T(n, i)=T(n, i-1)+i-1 \quad$ for $i>1$
- $\mathbf{T}(\mathbf{n}, \mathbf{1})=\mathbf{0}$ since a list of length $\mathbf{1}$ is always sorted
II Therefore $T(n, n)=n(n-1) / 2$

Solving recurrence relations

Il e.g. $T(n)=T(n-1)+f(n)$ for $n \geq 1$
$T(0)=0$
| solution is $T(n)=\sum_{i=1}^{n} f(i)$
Insertion sort: $T_{n}(i)=T_{n}(i-1)+i-1$
|l so $T_{n}(n)=\sum_{i=1}^{n}(i-1)=n(n-1) / 2$

Arithmetic Series

```
- \(S=1+2+3+\ldots+(n-1)\)
- \(S=(n-1)+(n-2)+(n-3)+\ldots+1\)
- \(2 S=n+n+n+\ldots .+n\{n-1\) terms \(\}\)
- \(2 S=n(n-1)\) so \(S=n(n-1) / 2\)
\| Works generally when \(f(i)=a i+b\) for all \(i\)
- Sum = average term size x \# of terms
```


Why Worst-Case Analysis?

Appropriate for time-critical applications, e.g. avionics

II Unlike Average-Case, no debate about what the right definition is

- Analysis often easier
- Result is often representative of "typical" problem instances
- Of course there are exceptions...

