
1

1

&6(�������$OJRULWKPV�DQG�
&RPSXWDWLRQDO�&RPSOH[LW\

���&RPSOH[LW\��FRQW��

Winter 2002
W. L. Ruzzo

2

Complexity

Problem size

T
im

e

T(n)

n log2n

2n log2n

3

O-notation etc

❚ Given two functions f and g:N→R
❙ f(n) is O(g(n)) iff there is a constant c>0 so

that c g(n) is eventually
always ≥ f(n)

❙ f(n) is Ω(g(n)) iff there is a constant c>0 so
that c g(n) is eventually
always ≤ f(n)

❙ f(n) is Θ(g(n)) iff there is are constants c1
and c2>0 so that eventually
always c1g(n) ≤ f(n) ≤ c2g(n)

4

Example

❚ Mergesort
❙ on a problem of size at least 2

❘ Sort the first half of the numbers

❘ Sort the second half of the numbers

❘ Merge the two sorted lists

❙ on a problem of size 1 do nothing

5

Cost of Merge

❚ Given two lists to merge size n and m
❙ Maintain pointer to head of each list
❙ Move smaller element to output and advance

pointer
n

m

n+m

Worst case n+m-1 comparisons
Best case min(n,m) comparisons 6

Recurrence relation for
Mergesort

❚ In total including other operations let’s say each
merge costs 3 per element output

❚ T(n)=T(n/2)+T(n/2)+3n for n≥2
❚ T(1)=1
❚ Can use this to figure out T for any value of n

❙ T(5)=T(3)+T(2)+3x5
=(T(2)+T(1)+3x3)+(T(1)+T(1)+3x2)+15
=((T(1)+T(1)+6)+1+9)+(1+1+6)+15
=8+10+8+15=41

“ceiling” round up

“floor” round down

2

7

Insertion Sort

❚ For i=2 to n do
j←i
while(j>1 & X[j] > X[j-1]) do

swap X[j] and X[j-1]

❚ i.e., For i=2 to n do
Insert X[i] in the sorted list

X[1],...,X[i-1]

8

Recurrence relation for Insertion
Sort

❚ Let T(n,i) be the worst case cost of creating list
that has first i elements sorted out of n.
❙ We want T(n,n)

❚ The insertion of X[i] makes up to i-1
comparisons in the worst case

❚ T(n,i)=T(n,i-1)+i-1 for i>1
❚ T(n,1)=0 since a list of length 1 is always

sorted
❚ Therefore T(n,n)=n(n-1)/2

9

Solving recurrence relations

❚ e.g. T(n)=T(n-1)+f(n) for n ≥ 1
T(0)=0

❙ solution is T(n)=

❚ Insertion sort: Tn(i)=Tn(i-1)+i-1
❙ so Tn(n)= =n(n-1)/2

∑n

i=1
f(i)

∑n

i=1
(i -1)

10

Arithmetic Series

❚ S= 1 + 2 + 3 + ... + (n-1)
❚ S= (n-1)+(n-2)+(n-3)+ ... + 1
❚ 2S=n + n + n + + n {n-1 terms}
❚ 2S=n(n-1) so S=n(n-1)/2

❚ Works generally when f(i)=ai+b for all i
❚ Sum = average term size x # of terms

11

Complexity analysis

❚ Problem size n
❙ Worst-case complexity: max # steps

algorithm takes on any input of size n
❙ Best-case complexity: min # steps

algorithm takes on any input of size n
❙ Average-case complexity: avg # steps

algorithm takes on inputs of size n

12

Why Worst-Case Analysis?

❚ Appropriate for time-critical applications,
e.g. avionics

❚ Unlike Average-Case, no debate about
what the right definition is

❚ Analysis often easier
❚ Result is often representative of "typical"

problem instances
❚ Of course there are exceptions…

