CSE 417: Algorithms and
Computational Complexity

3: Complexity (cont.)

Winter 2002
W. L. Ruzzo

Complexity

Time

Problem size

O-notation etc

Given two functions f and g:N - R
f(n) is O(g(n)) iff there is a constant c>0 so
that c g(n) is eventually
always = f(n)
f(n) is Q(g(n)) iff there is a constant c>0 so
that c g(n) is eventually
always < f(n)
f(n) is ©(g(n)) iff there is are constants ¢,
and c,>0 so that eventually
always c,g(n) < f(n) < c,g(n)

3

Example

Mergesort
on a problem of size at least 2
Sort the first half of the numbers
Sort the second half of the numbers
Merge the two sorted lists
on a problem of size 1 do nothing

Cost of Merge

Given two lists to merge size n and m
Maintain pointer to head of each list

Move smaller element to output and advance
pointer

[T ™
n+m

Worst case n+m-1 comparisons
Best case min(n,m) comparisons

Recurrence relation for
Mergesort

In total including other operations let's say each
merge costs 3 per element output
‘ceiling” round up
T(n)=T(/20+T(h/20+3n for n=2
T(1)=1 floor” round down

Can use this to figure out T for any value of n
T(5)=T(3)+T(2)+3x5
=(T(2)+T(1)+3x3)+(T(1)+T(1)+3x2)+15
=((T(D)+T(2)+6)+1+9)+(1+1+6)+15
=8+10+8+15=41

Insertion Sort

Fori=2 to n do
ji
while(j>1 & X[j]> X[]j-1]) do
swap X[j]and X[j-1]

i.e.,, Fori=2tondo
Insert X[i] in the sorted list
X[1],...,X[i-1]

Recurrence relation for Insertion
Sort

Let T(n,i) be the worst case cost of creating list
that has first i elements sorted out of n.
We want T(n,n)

The insertion of X[i] makes up to i-1
comparisons in the worst case

T(n,i)=T(n,i-1)+i-1 fori>1

T(n,1)=0 since a list of length 1 is always
sorted

Therefore T(n,n)=n(n-1)/2

Solving recurrence relations

e.g. T(n)=T(n-1)+f(n) forn = 1
T(0)=0
solution is T(n)= 5 " ()

Insertion sort: T, (i)=T,(i-1)+i-1
s0 To(n)= 5 1,(i-1) =n(n-1)/2

Arithmetic Series

S=1 + 2 +3 + ..+(n1)

S= (n-1)+(n-2)+(n-3)+ ... + 1

2S=n + n + n + ... +n {n-1terms}
2S=n(n-1) so S=n(n-1)/2

Works generally when f(i)=ai+b for all i
Sum = average term size x # of terms

Complexity analysis

Problem size n
Worst-case complexity: max # steps
algorithm takes on any input of size n
Best-case complexity: min # steps
algorithm takes on any input of size n
Average-case complexity: avg # steps
algorithm takes on inputs of size n

Why Worst-Case Analysis?

Appropriate for time-critical applications,
e.g. avionics

Unlike Average-Case, no debate about
what the right definition is

Analysis often easier

Result is often representative of "typical”
problem instances

Of course there are exceptions...

