CSE 417: Algorithms and
Computational Complexity

2: Complexity

Winter 2002
Lecture by: Bill Pentney

Complexity analysis

Problem size n
Worst-case complexity: max # steps
algorithm takes on any input of size n
Best-case complexity: min # steps
algorithm takes on any input of size n

Average-case complexity: avg # steps
algorithm takes on inputs of size n

Complexity

The complexity of an algorithm associates a
number T(n), the best/worst/average-case time
the algorithm takes, with each problem size n.

Mathematically,
T:N* - R*
thatis T is a function that maps positive

integers giving problem size to positive real
numbers giving number of steps.

Complexity

Time

Problem size

T(n)

Complexity

2n log,n

Time

Problem size

O-notation etc

Given two functions f and g:N - R

f(n) is O(g(n)) iff there is a constant c>0 so
that c g(n) is eventually
always = f(n)
f(n) is Q(g(n)) iff there is a constant c>0 so
that c g(n) is eventually
always < f(n)
f(n) is ©(g(n)) iff there is are constants ¢,
and c,>0 so that eventually
always c,g(n) < f(n) < c,g(n)

6

Examples

10n2-16n+100 is O(n?)
10n2-16n+100 < 11n2for alln =10

10n2-16n+100 is Q(n?)
10n2-16n+100 = 9n? for all n =16
Therefore also 10n2-16n+100 is ©(n?)

10n2-16n+100 is not O(n)

Note: | don’t use notation f(n)=0(g(n))

Domination

f(n) is o(g(n)) iff lim,_,, f(n)/g(n)=0
thatis g(n) dominates f(n)

If o < B then n®is O(nPf)

If o <B then n®is o(nP)

Note: if f(n) is ©(g(n)) then it cannot be
o(g(n))

Working with O-Q-0 notation

Claim: Forany a, b>1 log,n is ©(log,n)
log,n=log,b logyn so letting c=log,b we get
that clogyn <log,n <clogyn

Claim: For any a and b>0, (n+a)®is ©(n°)
(n+a)® < (2n)e for n=|a|

= 2bnb = cnb for c=2P so (n+a)® is O(nb)
(n+a)b =(n/2)® for n= 2|a|
=2bnb =¢’n for c=2"b so (n+a)P is Q(n°)

General algorithm design
paradigm

Find a way to reduce your problem to one
or more smaller problems of the same
type

When problems are really small solve
them directly

Example

Mergesort
on a problem of size at least 2
Sort the first half of the numbers
Sort the second half of the numbers
Merge the two sorted lists
on a problem of size 1 do nothing

Cost of Merge

Given two lists to merge size n and m
Maintain pointer to head of each list

Move smaller element to output and advance
pointer

[T ™

Worst case n+m-1 comparisons
Best case min(n,m) comparisons 12

n+m

Recurrence relation for
Mergesort

In total including other operations let's say each
merge costs 3 per element output
‘ceiling” round up

T(n)=T(/20+T(h/20+3n for n=2

T(1)=1 floor” round down

Can use this to figure out T for any value of n

T(5)=T(3)+T(2)+3x5

=(T(2)+T(1)+3x3)+(T(1)+T(1)+3x2)+15
=((T(1)+T(1)+6)+1+9)+(1+1+6)+15
=8+10+8+15=41

Insertion Sort

Fori=2 to n do
ji
while(j>1 & X[j]> X[]-1]) do
swap X[j]and X[j-1]

i.e.,, Fori=2tondo
Insert X[i] in the sorted list
X[1],...,X[i-1]

May need to add extra
conditions - Insertion Sort

Original problem
Input: X4,...,X, with same values as a;,...,a,

Desired output: X,<X, <... <X, containing
same values as a,,...,a,

Partial progress
X1<X; <. X, Xi41,-.-,X, CONtaining same values
as ay,...,a,

Recurrence relation for Insertion
Sort

Let T(n,i) be the worst case cost of creating list
that has first i elements sorted out of n.
We want T(n,n)

The insertion of X[i] makes up to i-1
comparisons in the worst case

T(n,i)=T(n,i-1)+i-1 fori>1

T(n,1)=0 since a list of length 1 is always
sorted

Therefore T(n,n)=n(n-1)/2 (next class) "

