CSE 417: Algorithms and Computational Complexity

2: Complexity

Winter 2002 Lecture by: Bill Pentney

Complexity analysis

- Problem size n
 - Worst-case complexity: max # steps algorithm takes on any input of size n
 - I Best-case complexity: min # steps algorithm takes on any input of size n
 - Average-case complexity: avg # steps algorithm takes on inputs of size n

2

Complexity

- The complexity of an algorithm associates a number T(n), the best/worst/average-case time the algorithm takes, with each problem size n.
- Mathematically,
 - I T: $N^+ \rightarrow R^+$
 - I that is **T** is a function that maps positive integers giving problem size to positive real numbers giving number of steps.

Complexity

T(n)

Problem size

O-notation etc

- Given two functions f and g:N→R
 - I f(n) is O(g(n)) iff there is a constant c>0 so that c g(n) is eventually always ≥ f(n)
 - I f(n) is Ω(g(n)) iff there is a constant c>0 so that c g(n) is eventually always ≤ f(n)
 - I f(n) is $\Theta(g(n))$ iff there is are constants c_1 and $c_2>0$ so that eventually always $c_1g(n) \le f(n) \le c_2g(n)$

Examples

- 10n²-16n+100 is O(n²) also O(n3)
 - I $10n^2$ -16n+100 ≤ $11n^2$ for all n ≥ 10
- **10n²-16n+100** is Ω (**n**²)
 - 10n²-16n+100 ≥ 9n² for all n ≥16
 - I Therefore also $10n^2-16n+100$ is $\Theta(n^2)$
- **10**n²-16n+100 is not O(n) also not Ω (n³)
- Note: I don't use notation f(n)=O(g(n))

Domination

- f(n) is o(g(n)) iff $\lim_{n\to\infty} f(n)/g(n)=0$
 - I that is g(n) dominates f(n)
- If $\alpha \leq \beta$ then \mathbf{n}^{α} is $\mathbf{O}(\mathbf{n}^{\beta})$
- If $\alpha < \beta$ then \mathbf{n}^{α} is $\mathbf{o}(\mathbf{n}^{\beta})$
- Note: if f(n) is $\Theta(g(n))$ then it cannot be o(g(n))

Working with $O-\Omega-\Theta$ notation

- Claim: For any a, b>1 $\log_a n$ is $\Theta(\log_b n)$
 - I log_an=log_ab log_bn so letting c=log_ab we get that $clog_b n \le log_a n \le clog_b n$
- Claim: For any a and b>0, $(n+a)^b$ is $\Theta(n^b)$
 - I $(n+a)^b \le (2n)^b$ for $n \ge |a|$
 - $= 2^b n^b = cn^b \text{ for } c=2^b \text{ so } (n+a)^b \text{ is } O(n^b)$
 - $(n+a)b ≥ (n/2)^b$ for n ≥ 2|a| $=2^{-b}$ n b =c'n for c= 2^{-b} so (n+a) b is Ω (n b)

General algorithm design paradigm

- Find a way to reduce your problem to one or more smaller problems of the same type
- When problems are really small solve them directly

Example

- Mergesort
 - on a problem of size at least 2
 - Sort the first half of the numbers
 - Sort the second half of the numbers
 - Merge the two sorted lists
 - I on a problem of size 1 do nothing

Cost of Merge

- Given two lists to merge size n and m
 - I Maintain pointer to head of each list
 - I Move smaller element to output and advance pointer

Worst case n+m-1 comparisons Best case min(n,m) comparisons

2

Recurrence relation for Mergesort

- In total including other operations let's say each merge costs 3 per element output
 - "ceiling" round up
- T(n)=T($\lceil n/2 \rceil$)+T($\lfloor n/2 \rfloor$)+3n for n≥2
- **■** T(1)=1
- Can use this to figure out T for any value of n
 - T(5)=T(3)+T(2)+3x5 =(T(2)+T(1)+3x3)+(T(1)+T(1)+3x2)+15 =((T(1)+T(1)+6)+1+9)+(1+1+6)+15 =8+10+8+15=41

13

Insertion Sort

- For i=2 to n do j←i while(j>1 & X[j] > X[j-1]) do swap X[j] and X[j-1]
- i.e., For i=2 to n do
 Insert X[i] in the sorted list
 X[1],...,X[i-1]

14

May need to add extra conditions - Insertion Sort

- Original problem
 - I Input: x₁,...,x_n with same values as a₁,...,a_n
 - **Desired output:** $x_1 \le x_2 \le ... \le x_n$ containing same values as $a_1,...,a_n$
- Partial progress
 - I $x_1 \le x_2 \le ... \le x_i, x_{i+1}, ..., x_n$ containing same values as $a_1, ..., a_n$

15

Recurrence relation for Insertion Sort

- Let **T**(**n**,**i**) be the **worst case cost** of creating list that has first **i** elements sorted out of **n**.
 - We want T(n,n)
- The insertion of **X[i]** makes up to **i-1** comparisons in the worst case
- **▼** T(n,i)=T(n,i-1)+i-1 for i>1
- T(n,1)=0 since a list of length 1 is always sorted
- Therefore **T(n,n)=n(n-1)/2** (next class)