
1

1

&6(�������$OJRULWKPV�DQG�
&RPSXWDWLRQDO�&RPSOH[LW\

���$OJRULWKPV�DQG�(IILFLHQF\

Winter 2002
Instructor: Larry Ruzzo

TA: Justin Campbell
TA: Bill Pentney

2

Algorithms: definition

❚ Procedure to accomplish a task or solve a
well-specified problem
❙ Well-specified: know what all possible inputs

look like and what output looks like given
them

❙ Ex: sorting names
❙ Ex: checking for primality

3

Algorithms: an example
problem

❚ Printed circuit-board company has a robot
arm that solders components to the board

❚ Time to do it depends on
❙ total distance the arm must move from initial

rest position around the board and back to
the initial positions

❚ For each board design, must figure out
good order to do the soldering

4

Printed Circuit Board

5

Printed Circuit Board

6

A well-defined Problem

❚ Input: Given a set S of n points in the plane

❚ Output: The shortest cycle tour that visits each
point in the set S.

❚ How might you solve it?

2

7

Nearest Neighbor Heuristic

❚ Start at some point p0

❚ Walk first to its nearest neighbor p1

❚ Repeatedly walk to the nearest unvisited
neighbor until all points have been visited

❚ Then walk back to p0

8

Nearest Neighbor Heuristic

p0

p1

p6

9

An input where it works badly

p0

11 24 816

10

Revised idea - Closest Pairs first

❚ Repeatedly pick the closest pair of points
to join so that the result can still be part of
a single loop in the end
❙ can pick endpoints of line segments already

created

❚ How does this work on our bad example?

11

Another bad example

1

1.5 1.5

12

Another bad example

1

1.5 1.5

1+√10 vs 3

3

13

Something that works

❚ For each of the n! orderings of the points
check the length of the cycle you get

❚ Keep the best one

14

Efficiency

❚ The two incorrect algorithms were greedy
❙ they made choices and never reconsidered

their choices
❙ often it does not work

❘ when it does the algorithms are typically efficient

❚ Our correct algorithm is incredibly slow
❙ 20! is so large that counting to one billion in a

second it would still take 2.4 billion seconds
❘ (around 70 years!)

15

Measuring efficiency:
The RAM model

❚ RAM = Random Access Machine

❚ Time ≈ # of instructions executed in an
ideal assembly language
❙ each simple operation (+,*,-,=,if,call) takes

one time step
❙ each memory access takes one time step

❚ No bound on the memory

16

We left out things but...

❚ Things we’ve dropped
❙ memory hierarchy

❘ disk, caches, registers have many orders of magnitude
differences in access time

❙ not all instructions take the same time in practice

❚ However,
❙ the RAM model is useful for designing algorithms and

measuring their efficiency
❙ one can usually tune implementations so that the

hierarchy etc. is not a huge factor

17

Efficiency: What kind of
analysis?

❚ Problem size n
❙ Worst-case complexity: max # steps

algorithm takes on any input of size n
❙ Best-case complexity: min # steps

algorithm takes on any input of size n
❙ Average-case complexity: avg # steps

algorithm takes on inputs of size n

18

Pros and cons:
❚ Best-case

❙ unrealistic overselling
❙ can tune an algorithm so it works on one easy input

❚ Worst-case
❙ a fast algorithm has a comforting guarantee
❙ no way to cheat by hard-coding special cases
❙ maybe too pessimistic

❚ Average-case
❙ over what distribution?
❙ different people may have different average problems

