CSE 417: Algorithms and Computational Complexity

0: Organization & Overview

Winter 2002 Instructor: Larry Ruzzo TA: Justin Campbell TA: Bill Pentney

What the course is about

- Design of Algorithms
 - design methods
 - I common or important types of problems
 - I how to analyze algorithms

What the course is about

- Computability
 - I theoretical machines and ideal computers
 - there are well-defined problems that even ideal computers can't solve
 e.g. Turing machines and the halting problem

What the course is about

- Complexity and NP-completeness
 - solving problems in principle is not enough
 algorithms must be efficient
 - NP

3

- I class of useful problems whose solutions can be easily checked but not necessarily found efficiently
- NP-completeness
 understanding when problems are hard to solve

Complexity Example

- Cryptography (e.g. RSA, SSL in browsers)
 - Secret: p,q prime, say 512 bits each
 - Public: n which equals pxq, 1024 bits
- In principle
 - I there is an algorithm that given n will find p and q by trying all 2⁵¹² possible p's.
- In practice
 - security of RSA depends on the fact that no **efficient** algorithm is known for this

What you'll have to do

- Programming
 - Possibly: several small projects and one large one
- Written homework assignments
 - English exposition and pseudo-code
 - Analysis and argument as well as design

7

Midterm & Final Exam

Rough Division of Time

- Algorithms (7 weeks)
 - Analysis of Algorithms
 - Basic Algorithmic Design Techniques
 - Graph Algorithms
 - Fast Fourier Transform
- Pattern Matching & Finite Automata
- Turing Machines & Computability (1.5 weeks)

8

Complexity & NP-completeness (1 weeks)