
1

1

&6(�������$OJRULWKPV�DQG�
&RPSXWDWLRQDO�&RPSOH[LW\

���2UJDQL]DWLRQ�	�2YHUYLHZ

Winter 2002
Instructor: Larry Ruzzo

TA: Justin Campbell
TA: Bill Pentney

2

What the course is about

❚ Design of Algorithms

❙ design methods
❙ common or important types of problems
❙ how to analyze algorithms

3

What the course is about

❚ Computability
❙ theoretical machines and ideal computers

❙ there are well-defined problems that even
ideal computers can’t solve
❘ e.g. Turing machines and the halting problem

4

What the course is about

❚ Complexity and NP-completeness
❙ solving problems in principle is not enough

❘ algorithms must be efficient

❙ NP
❘ class of useful problems whose solutions can be

easily checked but not necessarily found efficiently

❙ NP-completeness
❘ understanding when problems are hard to solve

5

Complexity Example

❚ Cryptography (e.g. RSA, SSL in browsers)
❙ Secret: p,q prime, say 512 bits each
❙ Public: n which equals pxq, 1024 bits

❚ In principle
❙ there is an algorithm that given n will find p

and q by trying all 2512 possible p’s.

❚ In practice
❙ security of RSA depends on the fact that no

efficient algorithm is known for this
6

Algorithms versus Machines

❚ We all know about Moore’s Law and the
exponential improvements in hardware but...

❚ Ex: sparse linear equations over past few
decades

❚ 10 orders of magnitude improvement in speed
❙ 4 orders of magnitude improvement in hardware
❙ 6 orders of magnitude improvement in algorithms

2

7

What you’ll have to do

❚ Programming
❙ Possibly: several small projects and one large

one

❚ Written homework assignments
❙ English exposition and pseudo-code
❙ Analysis and argument as well as design

❚ Midterm & Final Exam

8

Rough Division of Time

❚ Algorithms (7 weeks)
❙ Analysis of Algorithms
❙ Basic Algorithmic Design Techniques
❙ Graph Algorithms
❙ Fast Fourier Transform
❙ Pattern Matching & Finite Automata

❚ Turing Machines & Computability (1.5 weeks)
❚ Complexity & NP-completeness (1 weeks)

