

Algorithm Design Techniques

- Divide \& Conquer
- Reduce problem to one or more sub-problems of the same type
- Typically, each sub-problem is at most a constant fraction of the size of the original problem
- e.g. Mergesort, Binary Search, Strassen's Algorithm, Quicksort (kind of)

Analysis

A Practical Application- RSA

- Worst-case recurrence
- Instead of a^{n} want $\mathbf{a}^{n} \bmod \mathrm{~N}$
- $\mathbf{a}^{i+j} \bmod \mathbf{N}=\left(\left(\mathbf{a}^{i} \bmod \mathbf{N}\right) \cdot\left(\mathbf{a}^{j} \bmod \mathbf{N}\right)\right) \bmod \mathbf{N}$
- same algorithm applies with each $\mathrm{x} \cdot \mathrm{y}$ replaced by - $((\mathbf{x} \bmod \mathbf{N}) \cdot(\mathbf{y} \bmod \mathbf{N})) \bmod \mathbf{N}$
- $T(1)=0$
- Time

$$
\text { - } \begin{aligned}
\mathrm{T}(\mathrm{n})=\mathrm{T}(\lfloor\mathrm{n} / 2\rfloor)+2 & =\mathrm{T}(\lfloor\mathrm{n} / 4\rfloor)+2+2=\ldots \\
& =\mathrm{T}(1)+\underbrace{2+\ldots+2}_{\log _{2} \mathrm{n} \text { copies }}=2 \log _{2} \mathrm{n}
\end{aligned}
$$

- In RSA cryptosystem (widely used for security)
- need $\mathbf{a}^{\mathrm{n}} \bmod \mathrm{N}$ where $\mathrm{a}, \mathrm{n}, \mathrm{N}$ each typically have 1024 bits
- Power: at most 2048 multiplies of 1024 bit numbers
- relatively easy for modern machines
- Naive algorithm: 2^{1024} multiplies
- $\mathbf{T}(\mathbf{n})=\left\lceil\log _{2} \mathbf{n}\right\rceil+\#$ of 1 's in n's binary representation

\quad Time Analysis
- At each step we halved the size of the
interval
- It started at size $\mathbf{b - a}$
- It ended at size ε
- \# of calls to f is $\log _{2}((b-a) / \varepsilon)$

Why Balanced Subdivision?

- Alternative "divide \& conquer" algorithm:

Another D\&C Approach

- Sort firstn-1
- Suppose we've already invented DumbSort, taking time \mathbf{n}^{2}
- Sort last 1
- Merge them
- Try Just One Level of divide \& conquer:
- Recurrence
- $T(n)=T(n-1)+T(1)+3 n$ for $n \geq 2$
- $T(1)=0$
- Solution:
- $3 n+3(n-1)+3(n-2) \ldots=\Theta\left(n^{2}\right)$

DumbSort(first $\mathrm{n} / 2$ elements)
DumbSort(last $\mathbf{n} / \mathbf{2}$ elements) Merge results

- Time:
- $(\mathbf{n} / \mathbf{2})^{2}+(\mathbf{n} / \mathbf{2})^{2}+\mathbf{n}=\mathbf{n}^{2} / \mathbf{2}+\mathbf{n}$
- Almost twice as fast!

Some Divide \&Conquer morals

- Moral 1:
- Two problems of half size are better than one fullsize problem, even given the O(n) overhead of recombining, since the base algorithm has superlinear complexity.
- Moral 2:
- If a little's good, then more's better
- 2 levels of D\&C would be almost 4 times faster 3 levels almost 8 , etc., even though overhead is growing.
- Best is usually full recursion down to some small constant size (balancing "work" vs "overhead").

Divide \& Conquer morals

- Moral 3: unbalanced division less good:
- $(.1 \mathrm{n})^{2}+(.9 \mathrm{n})^{2}+\mathbf{n}=.82 \mathbf{n}^{2} / \mathbf{2}+\mathbf{n}$
- The 18% savings compounds significantly if you carry recursion to more levels, actually giving $\mathbf{O}(\mathrm{n} \log \mathrm{n})$, but with a bigger constant.
- worth doing if you can't get 50-50 split, but balanced is better if you can.
- This is intuitively why Quicksort with random splitter is good - badly unbalanced splits are rare, and not instantly fatal.
- $(\mathbf{1})^{2}+(\mathbf{n}-\mathbf{1})^{2}+\mathbf{n}=\mathbf{n}^{2}-\mathbf{2 n}+\mathbf{2}+\mathbf{n}$ - Little improvement here.
Sometimes two sub-problems aren't
enough
- More general divide and conquer
- You've broken the problem into a different sub-problems
- Each has size at most n/b
- The cost of the break-up and recombining the sub-problem solutions is $\mathbf{O}\left(\mathrm{n}^{\mathrm{k}}\right)$
- Recurrence
- $T(n)=a \cdot T(n / b)+c \cdot n^{k}$

Master Divide and Conquer Recurrence

- If $\mathbf{T}(\mathbf{n})=\mathbf{a} \cdot \mathbf{T}(\mathbf{n} / \mathbf{b})+\mathbf{c} \cdot \mathbf{n}^{k}$ for $\mathrm{n}>\mathbf{b}$ then
- if $\mathbf{a}>\mathbf{b}^{k}$ then $\mathrm{T}(\mathrm{n})$ is $\Theta\left(\mathrm{n}^{\log \mathrm{a}}\right)$
- if $\mathrm{a}<\mathrm{b}^{\mathrm{k}}$ then $\mathrm{T}(\mathrm{n})$ is $\Theta\left(\mathrm{n}^{k}\right)$
- if $a=b^{k}$ then $T(n)$ is $\Theta\left(n^{k} \log n\right)$
- Works even if it is $\lceil\mathbf{n} / \mathbf{b}\rceil$ instead of \mathbf{n} / \mathbf{b}.

Total Cost

- Geometric series
- ratio a/bk
- $\mathbf{d}+1=\log _{b} \mathrm{n}+1$ terms
- first term $\mathbf{c n}^{\mathrm{k}}$, last term ca $^{\text {d }}$
- If $a / b^{k}=1$
- all terms are equal $T(n)$ is $\Theta\left(n^{k} \log n\right)$
- If $a / b^{k}<1$
- first term is largest $T(n)$ is $\Theta\left(n^{k}\right)$
- If $a^{\prime} / b^{k}>1$
- last term is largest $T(n)$ is $\Theta\left(a^{d}\right)=\Theta\left(a^{\log _{b} n}\right)=\Theta\left(n^{\log _{b} a}\right)$ (To see this take $\log _{b}$ of both sides)

