
1

1

CSE 417: Algorithms and
Computational
Complexity

Divide & Conquer

Autumn 2002
Paul Beame

2

Algorithm Design Techniques

n Divide & Conquer
n Reduce problem to one or more sub-problems of

the same type

n Typically, each sub-problem is at most a
constant fraction of the size of the original
problem

n e.g. Mergesort, Binary Search, Strassen’s
Algorithm, Quicksort (kind of)

3

Fast exponentiation

n Power(a,n)
n Input: integer n and number a
n Output: an

n Obvious algorithm
n n-1 multiplications

n Observation:
n if n is even, n=2m, then an=am•am

4

Divide & Conquer Algorithm

n Power(a,n)
if n=0 then return(1)
else if n=1 then return(a)
else

x ←Power(a,n/2)
if n is even then

return(x•x)
else

return(a•x•x)

5

Analysis

n Worst-case recurrence
n T(n)=T(n/2)+2 for n=1
n T(1)=0

n Time
n T(n)=T(n/2)+2 = T(n/4)+2+2 = …

= T(1)+2+…+2 = 2 log2n

n More precise analysis:
n T(n)= log2n + # of 1’s in n’s binary

representation

log2n copies

6

A Practical Application- RSA

n Instead of an want an mod N
n ai+j mod N = ((ai mod N)•(aj mod N)) mod N
n same algorithm applies with each x•y replaced by

n ((x mod N)•(y mod N)) mod N

n In RSA cryptosystem (widely used for security)
n need an mod N where a, n, N each typically have

1024 bits
n Power: at most 2048 multiplies of 1024 bit

numbers
n relatively easy for modern machines

n Naive algorithm: 21024 multiplies

2

7

Binary search for roots
(bisection method)

n Given:
n continuous function f and two points a<b with

f(a) = 0 and f(b) > 0

n Find:
n approximation to c s.t. f(c)=0 and a<c<b

8

Bisection method

Bisection(a,b, ε)
if (a-b) < ε then

return(a)
else

c ←(a+b)/2
if f(c) = 0 then

return(Bisection(c,b,ε))
else

return(Bisection(a,c,ε))

9

Time Analysis

n At each step we halved the size of the
interval

n It started at size b-a
n It ended at size ε

n # of calls to f is log2((b-a)/ε)

10

Mergesort (review)

Mergesort: (recursively) sort 2 half-lists,
then merge results.

n T(n)=2T(n/2)+cn, n≥2
n T(1)=0
n Solution: Θ(n log n)

Lo
g

n
le

ve
ls O(n)

work
per
level

11

Why Balanced Subdivision?

n Alternative "divide & conquer" algorithm:
n Sort firstn-1
n Sort last 1
n Merge them

n Recurrence
n T(n)=T(n-1)+T(1)+3n for n≥2
n T(1)=0

n Solution:
n 3n + 3(n-1) + 3(n-2) … = Θ(n2)

12

Another D&C Approach

n Suppose we've already invented
DumbSort, taking time n2

n Try Just One Level of divide & conquer:
DumbSort(first n/2 elements)
DumbSort(last n/2 elements)
Merge results

n Time:
n (n/2)2 + (n/2)2 + n = n2/2 + n
n Almost twice as fast!

3

13

Some Divide &Conquer morals

n Moral 1:
n Two problems of half size are better than one full-

size problem, even given the O(n) overhead of
recombining, since the base algorithm has super-
linear complexity.

n Moral 2:
n If a little's good, then more's better

n 2 levels of D&C would be almost 4 times faster,
3 levels almost 8, etc., even though overhead is
growing.

n Best is usually full recursion down to some
small constant size (balancing "work" vs
"overhead").

14

Divide & Conquer morals

n Moral 3: unbalanced division less good:
n (.1n)2 + (.9n)2 + n = .82n2/2 + n

n The 18% savings compounds significantly if
you carry recursion to more levels, actually
giving O(n log n), but with a bigger constant.

n worth doing if you can’t get 50-50 split, but
balanced is better if you can.

n This is intuitively why Quicksort with random
splitter is good – badly unbalanced splits are
rare, and not instantly fatal.

n (1)2 + (n-1)2 + n = n2 - 2n + 2 + n
n Little improvement here.

15

Sometimes two sub-problems aren’t
enough

n More general divide and conquer
n You’ve broken the problem into a different

sub-problems

n Each has size at most n/b
n The cost of the break-up and recombining

the sub-problem solutions is O(nk)

n Recurrence
n T(n)= a⋅T(n/b)+c⋅nk

16

Master Divide and Conquer
Recurrence

n If T(n)= a⋅T(n/b)+c⋅nk for n>b then
n if a>bk then T(n) is

n if a<bk then T(n) is Θ(nk)

n if a=bk then T(n) is Θ(nk log n)

n Works even if it is n/b instead of n/b.

bl o g aΘ(n)

17

Proving Master recurrence

T(n)=aT(n/b)+cnk

an
Problem size

n/b

n/b2

b

1

probs

a2

a

1

ad

T(1)=c
18

Proving Master recurrence

T(n)=a⋅T(n/b)+c⋅nk

an
Problem size

n/b

n/b2

b

1

d=
lo

g b
n

probs

a2

a

1

ad

T(1)=c

4

19

Proving Master recurrence

T(n)=a⋅T(n/b)+c⋅nk

an
Problem size

n/b

n/b2

b

1

d=
lo

g b
n

probs

a2

a

1

ad

cost
cnk

T(1)=c

c⋅a⋅nk/bk

c⋅a2⋅nk/b2k

=c⋅nk(a/bk)2

c⋅nk(a/bk)d

=c⋅ad

20

Geometric Series

n S = t + tr + tr2 + ... + trn-1

n r⋅S = tr + tr2 + ... + trn-1 + trn

n (r-1)S =trn - t
n so S=t (rn -1)/(r-1) if r?1.

n Simple rule
n If r ? 1 then S is a constant times largest

term in series

21

Total Cost

n Geometric series
n ratio a/bk

n d+1=logbn +1 terms
n first term cnk, last term cad

n If a/bk=1
n all terms are equal T(n) is Θ(nk log n)

n If a/bk<1
n first term is largest T(n) is Θ(nk)

n If a/bk>1
n last term is largest T(n) is Θ(ad)=Θ(a) =Θ(n

(To see this take logb of both sides)

logbn logba)

