
1

1

ACMS Seminar Today

n Top Ten Algorithms of the 20th Century

n The Fast Fourier Transform
n Speaker: Peter Blossey

n Smith 205,  3:30-4:20

2

CSE 417:  Algorithms and 
Computational 
Complexity

Dynamic Programming, II

Autumn 2002
Paul Beame

3

Reading assignment

n Read sections 3.1-3.2 of  The 
ALGORITHM Design Manual

4

Three Steps to 
Dynamic Programming

n Formulate the answer as a recurrence 
relation or recursive algorithm

n Show that the number of different parameters 
in the recursive algorithm is “small”
n e.g., bounded by a low-degree polynomial

n Specify an order of evaluation for the 
recurrence so that you already have the 
partial results ready when you need them.

5

List partition problem

n Given: a sequence of n positive integers 
s1,...,sn and a positive integer k

n Find: a partition of the list into up to k
blocks:                                
s1,...,s i1

|si1+1...si2
|si2+1... sik-1

|sik-1+1...sn

so that the sum of the numbers in the 
largest block is as small as possible.           
i.e. find spots for up to k-1 dividers

6

Greedy approach

n Ideal size would be P=

n Greedy: walk along until what you have so 
far adds up to P then insert a divider

n Problem: it may not be exact (or correct)

100  200  400  500  900  700  600  800  600

n sum is 4800 so if k=3 size must be at least 1600.
n Greedy?  Best?

∑
n

i
i=1

s/k



2

7

Recursive solution

n Try all possible values for the position of 
the last divider

n For each position of this last divider
n there are k-2 other dividers that must 

divide the list of numbers prior to the last 
divider as evenly as possible 
n s1,...,s i1

|s i1+1...si2|s i2+1... sik-1
|s ik-1+1...sn

n recursive sub-problem of the same type

8

Recursive idea

n Let M[n,k] the smallest cost (size of largest 
block) of any partition of the first n #’s into k
pieces.

n If best position for last divider lies between 

the ith and i+1st then

M[n,k]= max ( M[i,k-1] ,         )

n In general 

M[n,k]= mini<n max ( M[i,k-1] ,         )

n Base case(s)?

∑
n

j
j=i+1

s

∑
n

j
j=i+1

s

cost of last block
max cost of 1st k-1 blocks

9

Time-saving - prefix sums

n Computing the costs of the blocks may be 
expensive and involved repeated work

n Idea: Pre-compute prefix sums
n Length of block

s i+1+... + s j

is just 

p[j]-p[i]

n Cost: n additions

p[1]=s1

p[2]=s1+s2

p[3]=s1+s2+s3 

...   
p[n]=s1+s2+...+sn

10

Linear Partition Algorithm

Partition(S,k):                                            
p[0]←0; 
for i=1 to n do p[i] ←p[i-1]+si

for i=1 to n do M[i,1] ←p[i] 

for j=1 to k do M[1,j] ← s1

for i=2 to n do                                        
for j=2 to k do                                       

M[i,j] ← minpos<i{max(M[pos,j-1], p[i]-p[pos])}          
D[i,j ] ← value of pos where min is achieved

11

Linear Partition Algorithm

Partition(S,k):                                            
p[0]←0; 
for i=1 to n do p[i] ←p[i-1]+si

for i=1 to n do M[i,1] ←p[i] 
for j=1 to k do M[1,j] ← s1

for i=2 to n do                                        
for j=2 to k do                                       

M[i,j]←∞
for pos=1 to i-1 do

s←max(M[pos,j-1], p[i]-p[pos])
if M[i,j ]>s then

M[i,j] ←s ; D[i,j] ←pos

12

Example:

600
800
600
700
900
500
400
200
100

321
Partition(S,k): 

p[0]←0; 
for i=1 to n do p[i] ←p[i-1]+si
for i=1 to n do M[i,1] ←p[i] 
for j=1 to k do M[1,j] ← s1

for i=2 to n do 
for j=2 to k do  

M[i,j] ← minpos <i{max(M[pos,j-1],
p[i]-p[pos])}

D[i,j ] ← value of pos where min
is achieved



3

13

Example:

4800600

4200800

3400600

2800700

2100900

1200500

700400

300200

100100100100
321

Partition(S,k): 
p[0]←0; 
for i=1 to n do p[i] ←p[i-1]+si
for i=1 to n do M[i,1] ←p[i] 
for j=1 to k do M[1,j] ← s1

for i=2 to n do 
for j=2 to k do  

M[i,j] ← minpos< i{max(M[pos,j-1],
p[i]-p[pos])}

D[i,j] ← value of pos where min
is achieved

14

Example:

27004800600

21004200800

21003400600

120016002800700

90012002100900

5007001200500

400400700400

200200300200

100100100100
321

Partition(S,k): 
p[0]←0; 
for i=1 to n do p[i] ←p[i-1]+si
for i=1 to n do M[i,1] ←p[i] 
for j=1 to k do M[1,j] ← s1

for i=2 to n do 
for j=2 to k do  

M[i,j] ← minpos< i{max(M[pos,j-1],
p[i]-p[pos])}

D[i,j] ← value of pos where min
is achieved

15

Example:

200027004800600

160021004200800

130021003400600

120016002800700

90012002100900

5007001200500

400400700400

200200300200

100100100100
321

Partition(S,k): 
p[0]←0; 
for i=1 to n do p[i] ←p[i-1]+si
for i=1 to n do M[i,1] ←p[i] 
for j=1 to k do M[1,j] ← s1

for i=2 to n do 
for j=2 to k do  

M[i,j] ← minpos <i{max(M[pos,j-1],
p[i]-p[pos])}

D[i,j ] ← value of pos where min
is achieved

16

Longest Increasing Subsequence

n Given a sequence of integers s1,...,sn find a 
subsequence si1

< si2
<...< sik

with i1<...<ik so 
that k is as large as possible.

n e.g. Given 9,5,2,8,7,3,1,6,4 as input, 
n possible increasing subsequence is 5,7

n better is 2,3,6 or 2,3,4 (either or which would be a 
correct output to our problem)

17

Find recursive algorithm

n Solve sub-problem on s1,...,sn-1 and then try 
to extend using sn

n Two cases:
n sn is not used

n answer is the same answer as on s1,...,sn-1

n sn is used
n answer is sn preceded by the longest 

increasing subsequence in s1,...,sn-1 that ends 
in a number smaller than sn

18

Refined recursive idea
(stronger notion of subproblem)

n Suppose that we knew for each i<n the 
longest increasing subsequence in s1,...,sn
that ends in s i.
n i=n-1 is just the n-1 size sub-problem we tried 

before.

n Now to compute value for i=n find
n sn preceded by the maximum over all i<n such 

that si<sn of the longest increasing subsequence 
ending in si

n First find the best length rather than trying to actually 
compute the sequence itself. 



4

19

Recurrence

n Let L[i]=length of longest increasing 
subsequence in s1,...,sn that ends in s i.

n L[j]=1+max{L[i] : i<j and s i<sj} 
(where max of an empty set is 0)

n Length of longest increasing subsequence:
n max {L[i]: 1≤ i ≤ n}

20

Computing the actual sequence

n For each j, we computed 
L[j]=1+max {L[i] : i<j and si<sj}

(where max of an 
empty set is 0)

n Also maintain P[j], the value of the i that 
achieved that max
n this will be the index of the predecessor of 

sj in a longest increasing subsequence that 
ends in sj

n by following the P[j] values we can 
reconstruct the whole sequence in linear 

21

Longest Increasing Subsequence 
Algorithm

n for j=1 to n do
L[j]←1                                                        
P[j]←0 
for i=1 to j-1 do

if (s i<sj & L[i]+1<L[j]) then
P[j] ←i                                          
L[j] ←L[i]+1                                   

endfor
endfor

n Now find j such that L[j] is largest and walk 
backwards through P[j] pointers to find the sequence                                 

22

Example

1 2 3 4 5 6 7 8 9i

s i

L[i]

P[i]

for j=1 to n do
L[j ]←1
P[j ]←0
for i=1 to j -1 do

if (si<sj & L[i]+1<L[j ]) then
P[j ] ←i 
L[j ] ←L[i]+1

endfor
endfor

23

Example

1 2 3 4 5 6 7 8 9

90 50 20 80 70 30 10 60 40

i

s i

L[i]

P[i]

for j=1 to n do
L[j ]←1
P[j ]←0
for i=1 to j -1 do

if (si<sj & L[i]+1<L[j ]) then
P[j ] ←i 
L[j ] ←L[i]+1

endfor
endfor


