ACMS Seminar Today

= Top Ten Algorithms of the 20" Century

= The Fast Fourier Transform
= Speaker: Peter Blossey

= Smith 205, 3:30-4:20

CSE 417: Algorithms and
Computational
Complexity

Dynamic Programming, Il

Autumn 2002
Paul Beame

Three Steps to
Dynamic Programming

= Formulate the answer as a recurrence
relation or recursive algorithm

= Show that the number of different parameters
in the recursive algorithm is “small”
= e.g., bounded by a low-degree polynomial

= Specify an order of evaluation for the
recurrence so thatyou already have the
partial results ready when you need them.

4 Reading assignment
= Read sections 3.1-3.2 of The
ALGORITHM Design Manual
List partition problem

= Given: a sequence of n positive integers
S.,--,S, @and a positive integer k

= Find: a partition of the list into up to k
blocks:
S1esSilSipe1+- S ISiye1e Si, Si, r1+Sn
so that the sum of the numbers in the
largest block is as small as possible.
i.e. find spots for up to k-1 dividers

o

Greedy approach

8
= |deal size would be P= Q s/k

i=1

= Greedy: walk along until what you have so
far adds up to Pthen insert a divider

= Problem: it may not be exact (or correct)
100 200 400 500 900 700 600 800 600

= sum is 4800 so if k=3 size must be at least 1600.
= Greedy? Best?

= Try all possible values for the position of
the last divider

= For each position of this last divider

= there are k-2 other dividers that must
divide the list of numbers prior to the last
divider as evenly as possible

* 81300008, [81,41-+:8, 8141+ S, 18 S
= recursive sub-problem of the same type

ika+1"">~n

= Let M[n,k] the smallest cost (size of largest
block) of any partition of the first n #'s into k
pieces.

= If best position for last divider lies between

the it and i+1 then max cost of 1st k1 blocks
cost of last block

M[n K= max (M[ik-1], &)
= In general "
M[n,k]= min,_, max (M[ik-1], & s,)

j=i+1
= Base case(s)? -

N

= Computing the costs of the blocks may be
expensive and involved repeated work

= |dea: Pre-compute prefix sums
= Length of block

S|+1+'" + S] p[l]:SI
is just p[2]=s+s,
- 3]=s,+s,*s
pll-pl PISJ=Sy 5756

« Cost: n additions

plnj=s, +s,+...45,

Partition(S,k):
p[0]- O;
for i=1ton do p[i] = p[i-1]+s;
for i=1ton do M[i,1] - pl[i]
for j=1to k do M[1,j]= s,

fori=2 ton do
forj=2 to kdo
Mi,j] = minp,sci{max(M[pos,j-1], p[i]-p[pos])}
D[i,j] = value of pos where min is achieved

Partition(S,k):
p[0]- O;
for i=1 to n do p[i] = p[i-1]+s;
for i=1 to n do M[i,1] - p[i]
forj=1to kdo M[1,j]-~ s;
fori=2 ton do
forj=2to k do
M[i,j]—- ¥
forpos=1toi-1do
s- max(M[pos,j-1], p[i]-p[pos])
if M[i,j]>s then
M[i,j] = s D[i,j] = pos

Example:
1 2 3
100 Partition(S, k):
pl0]- O;
200 fori=1to n dop[i]-~ p[i-1]+s,
for i=1to n do M[i,1] - pfi]
400 forj=1to k do M[1,j] = s,
for =2 to n do
500 for j=2to k do
M[ij] = min_ {max(M[pos,j-1],
900 ’ pli-plposh}
D[ij] -~ value of hy i
700 il g vere
600
800
600
12

1 2 3

100[100 [100 [100 | "o’

for i=1to n do p[i]~ pli-1]+s;

200(300 [200 |200 for =110 n do M[i, 1] ~ pf]

400 700 400 400 forj=1to k do M[1,j] ~ s,

fori=2to n do

5001200 {700 |500 forj=2to k do
ME.j] = ming, . {maxM[pos.j-1],
9002100 | 1200 |900 - Pllplpos))
1,)] =~ value of pos where min
700]2800 [1600 {1200 is achieved

600|3400 (2100

800/4200 (2100

600|4800 [2700

1l 2] 3
100[100 [100 [100 | ™hors’
400(700 fori2to n do
500/ 1200 mri:fg,lﬁf dﬂmm‘{max(m[pos‘171],
900/ 2100 D01 ~ value of pos e b))
700 2800 is achieved
600| 3400
800[4200
6004800 N
Example:
1 2 Partition(S,k):

1001100 |100 (100 PO O;

fori=1to n dop[i]- p[i-1]+s,

200 300 200 200 for i=1to n do M[i,1] - pfi]

for=1to k doM[L,j] - s,
400700 [400 |400

for i=2 ton do
500 1200 700 500 forJN:I[ﬁ](]Oﬁk (::mmﬂ(max(M[pos.]-l]‘
900 2100 1200 900 D[ij] = value of pos w?wlé]v-s[r;o:])}
is achieved

700]2800 | 1600 [1200

600}3400 | 2100 [1300

800]4200 | 2100 [1600

600]4800 | 2700 [2000

= Given a sequence of integerss,,...,S, find a
subsequence S, <S; <...<S, with i;<...<i, so
1 2 k
that k is as large as possible.

= e.g. Given 9,5,2,8,7,3,1,6,4 as input,
= possible increasing subsequence is 5,7

= better is 2,3,6 or 2,3,4 (either or which would be a
correct output to our problem)

= Solve sub-problemons,,...,s , and then try
to extend using s,

= Two cases:

= S, is not used
= answer is the same answer as on s,...,S,
= S isused
= answer is s, preceded by the longest
increasing subsequence in s,,...,s,.; that ends
in a number smaller than s,

Refined recursive idea

= Suppose that we knew for each i<n the
longest increasing subsequence in s ,,....s
thatends in s;.
= i=n-1is just the n-1 size sub-problem we tried
before.
= Now to compute value for i=n find
= s, preceded by the maximum over alli<n such
that s;<s, of the longest increasing subsequence
ending in s;
= First find the best length rather than trying to actually
compute the sequence itself.

@ Recurrence

= Let L[i]=length of longest increasing
subsequenceins,...s, thatendsins,.

= L[j]=1+max{L[i] : i<j and s;<s}
(where max of an empty set is 0)

= Length of longest increasing subsequence:
= max {L[i]: 1£i £n}

Longest Increasing Subsequence
ﬂ Algorithm
=
= forj=1lton do
L[]~ 1
P[j]- 0
fori=1toj-1do
if (SiGj & L[i]+1<L[j]) then
Pl]-i
L[] ~ L[i]+1
endfor
endfor

= Now find j such that L[j] is largest and walk
backwards through P[j] pointers to find the sequence

4 Computing the actual sequence
.

= For each j, we computed
LJ=1+max {L[i] : ig and s<s;}
(where max of an
empty set is 0)
= Also maintain P[j], the value of the i that
achieved that max

= this will be the index of the predecessor of
s; in a longest increasing subsequence that

endsin s,
= by following the PJ[j] values we can
racanstriict the whole seqlience in linear 20
‘ forj=1ton do
\ Exampl Li-1
\' ampte Pl]- 0
A - fori=1toj-1do
if (si<s; & L[il+1<L[j]) then
Pl]-i
L[]~ L[i]+1
endfor
endfor

i 1123|456 |7]8(9

L[i]

Pl]

forj=1ton do
& Example L} 1
P[i]- 0
fori=1toj-1do
if (s<s, & L[i[+1<L[j]) then
Pfi]-i
L[]~ L{iJ+1

L[i]

Pli]

