

CSE 417: Algorithms and Computational
Complexity

Reading assignment - Read sections 3.1-3.2 of The ALGORITHM Design Manual	

Dynamic Programming, II

Autumn 2002
Paul Beame

Three Steps to Dynamic Programming

- Formulate the answer as a recurrence relation or recursive algorithm
- Show that the number of different parameters in the recursive algorithm is "small"
- e.g., bounded by a low-degree polynomial
- Specify an order of evaluation for the recurrence so that you already have the partial results ready when you need them.

List partition problem

- Given: a sequence of n positive integers $\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{n}}$ and a positive integer k
- Greedy: walk along until what you have so far adds up to P then insert a divider
- Find: a partition of the list into up to k blocks:
$s_{1}, \ldots, s_{i}\left|s_{i_{1}+1} \ldots s_{i_{2}}\right| s_{i_{2}+1} \ldots s_{i_{k-1}} \mid s_{k_{k+1}+1} \ldots s_{n}$ so that the sum of the numbers in the largest block is as small as possible. i.e. find spots for up to k - 1 dividers
- Problem: it may not be exact (or correct)

100200400500900700600800600

- sum is 4800 so if $\mathrm{k}=3$ size must be at least 1600 .
- Greedy? Best?

Recursive solution

- Try all possible values for the position of the last divider
- For each position of this last divider
- there are k-2 other dividers that must divide the list of numbers prior to the last divider as evenly as possible

- recursive sub-problem of the same type

Recursive idea

- Let $\mathrm{M}[\mathrm{n}, \mathrm{k}]$ the smallest cost (size of largest block) of any partition of the first n \#'s into k pieces.
- If best position for last divider lies between

- In general
$M[n, k]=\min _{i<n} \max \left(M[i, k-1], \sum_{j=1+1}^{n} s_{j}\right)$
- Base case(s)?

Time-saving - prefix sums

- Computing the costs of the blocks may be expensive and involved repeated work
- Idea: Pre-compute prefix sums
- Length of block

$$
s_{i+1}+\ldots+s_{j}
$$

is just
$p[j]-p[i]$

- Cost: n additions

$$
\begin{array}{|l|}
\hline \mathrm{p}[1]=\mathrm{s}_{1} \\
\mathrm{p}[2]=\mathrm{s}_{1}+\mathrm{s}_{2} \\
\mathrm{p}[3]=\mathrm{s}_{1}+\mathrm{s}_{2}+\mathrm{s}_{3} \\
\ldots \\
\mathrm{p}[\mathrm{n}]=\mathrm{s}_{1}+\mathrm{s}_{2}+\ldots+\mathrm{s}_{\mathrm{n}}
\end{array}
$$

Linear Partition Algorithm

```
Partition(\mathbf{S,k}):
    p[0]\leftarrow0;
    for i=1 to n do p[i] 
    for i=1 to n do M[i,1]}\leftarrow\mathbf{p[i]
    for j=1 to k do M[1,j]}\leftarrow\mp@subsup{\mathbf{s}}{\mathbf{1}}{
    fori=2 to n do
        for }\mathbf{j}=\mathbf{2}\mathrm{ to }\mathbf{k}\mathrm{ do
            M[i,j]\leftarrow\infty
            for pos=1 to i-1 do
                s\leftarrowmax(M[pos,j-1], p[i]-p[pos])
                    if M[i,j]>S then
                        M[i,j}\leftarrow\mathbf{s;D[i,j]}\leftarrow\mathrm{ pos
```


Example:				
	1	2	3	
		100	100	Partition(S, \mathbf{k}): $\mathrm{p}[0] \leftarrow 0$; or for $=1$ to \mathbf{n} do $\mathbf{M [i , 1]} \leftarrow \mathbf{p l i]}$ for $=\mathbf{k}=1$ to \mathbf{k} do $\mathbf{M [1 , j]} \leftarrow \mathbf{s}_{1}$
200	300			
400	700			for $\mathrm{i}=\mathbf{2}$ to \mathbf{n} do for $\mathbf{j}=\mathbf{2}$ to \mathbf{k} do $\mathbf{M [i , j]} \begin{gathered}\leftarrow \min _{\text {pos }<1}\{\max (\mathbf{M}[\text { pos }, \mathrm{j}-1], \\ \mathrm{P}[\mathrm{i}]-\mathrm{p}[\text { pos }])\}\end{gathered}$ $\mathrm{D}[\mathrm{i}, \mathrm{j}] \mathrm{value}$ of pos where min is achieved
500	1200			
900	2100			
700	2800			
600	3400			
800	4200			
600	4800			13

Example:				
	1	2	3	Partition(\mathbf{S}, \mathbf{k}) $\mathrm{p}[0] \leftarrow 0$; for $i=1$ to \mathbf{n} do $\mathbf{p}[\mathbf{i}] \leftarrow \mathbf{p}[\mathbf{i}-1]+\mathbf{s}_{\mathbf{i}}$
100	100	100	100	
200	300	200	200	
400	700	400	400	
500	1200	700	500	
900	2100	1200	900	
700	2800	1600	1200	is achieved
600	3400	2100		
800	4200	2100		
600	4800	2700		14

Example:				
	1	2	3	
100	100	100	100	Partition(S, \mathbf{k}) $\mathrm{p}[0] \leftarrow 0$; for $\mathbf{i}=\mathbf{1}$ to \mathbf{n} do $\mathbf{p}[\mathbf{i}] \leftarrow \mathbf{p}[\mathbf{i}-1]+\mathbf{s}$ for $i=1$ to \mathbf{n} do $\mathbf{M}[\mathbf{i}, \mathbf{1}] \leftarrow \mathbf{p}[\mathbf{i}]$ for $\mathbf{j}=\mathbf{1}$ to \mathbf{k} do $\mathbf{M}[\mathbf{1 , j}] \leftarrow \mathbf{s}$
200	300	200	200	
400	700	400	400	
500	1200	700	500	for $\mathbf{i}=\mathbf{2}$ to \mathbf{n} do for $\mathbf{j}=\mathbf{2}$ to \mathbf{k} do $M[i, j] \leftarrow \min _{\text {pos }<1}\{\max (M[\operatorname{pos}, j-1]$, $\mathrm{D}[i, \mathrm{j}] \stackrel{\text { value of pos where min }}{\text { is achieved }}$
900	2100	1200	900	
700	2800	1600	1200	
600	3400	2100	1300	
800	4200	2100	1600	
600	4800	2700	2000	

Find recursive algorithm

- Solve sub-problem on $\mathbf{s}_{1}, \ldots, \mathbf{s}_{\mathrm{n}-1}$ and then try to extend using \mathbf{s}_{n}
- Two cases:
- $\mathbf{S}_{\mathbf{n}}$ is not used
- answer is the same answer as on $\mathbf{s}_{1}, \ldots, \mathbf{s}_{\mathrm{n}-1}$
- \mathbf{S}_{n} is used
- answer is \mathbf{s}_{n} preceded by the longest
increasing subsequence in $\mathbf{s}_{1}, \ldots, \mathbf{s}_{n-1}$ that ends
Refined recursive idea (stronger notion of subproblem)
- Suppose that we knew for each $\mathbf{i}<\mathbf{n}$ the longest increasing subsequence in $\mathbf{s}_{1}, \ldots, \mathbf{s}_{\mathbf{n}}$ that ends in $\mathbf{s}_{\mathbf{i}}$.
- $\mathrm{i}=\mathrm{n}-1$ is just the $\mathrm{n}-1$ size sub-problem we tried before.
- Now to compute value for $\mathbf{i}=\mathbf{n}$ find
- s_{n} preceded by the maximum over all $i<n$ such that $\mathbf{s}_{i}<\mathbf{s}_{\mathrm{n}}$ of the longest increasing subsequence ending in $\mathbf{s}_{\mathbf{i}}$
- First find the best length rather than trying to actually compute the sequence itself.

Longest Increasing Subsequence Algorithm

- for $\mathbf{j}=\mathbf{1}$ to \mathbf{n} do
$L[j] \leftarrow 1$
$P[j] \leftarrow 0$ for $\mathbf{i}=\mathbf{1}$ to $\mathbf{j}-\mathbf{1}$ do
if ($\left.\mathbf{s}_{\mathbf{i}}<\mathbf{s}_{\mathbf{j}} \& \mathrm{~L}[\mathrm{i}]+\mathbf{1}<\mathrm{L}[\mathrm{j}]\right)$ then
$\mathrm{P}[\mathrm{j}] \leftarrow \mathrm{i}$
$\mathrm{L}[\mathrm{j}] \leftarrow \mathrm{L}[\mathrm{i}]+1$
endfor
endfor
- Now find \mathbf{j} such that $\mathrm{L}[\mathrm{j}]$ is largest and walk backwards through $\mathbf{P}[\mathrm{j}]$ pointers to find the sequence

