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CSE 417:  Algorithms and 
Computational 
Complexity

Dynamic Programming

Autumn 2002
Paul Beame
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Reading assignment

n Read sections 3.1-3.2 of  The 
ALGORITHM Design Manual
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Some Algorithm Design 
Techniques, I

n General overall idea
n Reduce solving a problem to a smaller problem or 

problems of the same type

n Greedy algorithms
n Used when one needs to build something a piece 

at a time
n Repeatedly make the greedy choice - the one that 

looks the best right away
n e.g. closest pair in TSP search

n Usually fast if they work (but often don't)
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Some Algorithm Design 
Techniques, II

n Divide & Conquer
n Reduce problem to one or more sub-problems of 

the same type 

n Typically, each sub-problem is at most a constant 
fraction of the size of the original problem
n e.g. Mergesort, Binary Search, Strassen’s 

Algorithm (we’ll see this later), Quicksort (kind 
of)
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Some Algorithm Design 
Techniques, III

n Dynamic Programming
n Give a solution of a problem using smaller 

sub-problems where all the possible      
sub-problems are determined in advance

n Useful when the same sub-problems show 
up again and again in the solution
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A simple case:               
Computing Fibonacci Numbers

n Recall Fn=Fn-1+Fn-2 and F0=0, F1=1

n Recursive algorithm:
n Fibo(n)

if n=0 then return(0)                                             
else if n=1 then return(1)                                                 
else return(Fibo(n-1)+Fibo(n-2))



2

7

Call tree - start
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Full call tree
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Memo-ization (Caching)

n Remember all values from previous 
recursive calls

n Before recursive call, test to see if value 
has already been computed

n Dynamic Programming
n Convert memo-ized algorithm from a 

recursive one to an iterative one
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Fibonacci - Dynamic Programming 
Version

n FiboDP(n):                                                      
F[0]← 0
F[1] ←1
for i=2 to n do                                          

F[i]=F[i-1]+F[i-2]
endfor                                                   
return(F[n])
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Dynamic Programming

n Useful when 
n same recursive sub-problems occur 

repeatedly
n Can anticipate the parameters of these 

recursive calls
n The solution to whole problem can be 

figured out with knowing the internal details 
of how the sub-problems are solved
n principle of optimality

“Optimal solutions to the sub-problems suffice for 
optimal solution to the whole problem” 
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List partition problem

n Given: a sequence of n positive integers 
s1,...,sn and a positive integer k

n Find: a partition of the list into up to k
blocks:                                
s1,...,s i1

|si1+1...si2
|si2+1... sik-1

|sik-1+1...sn

so that the sum of the numbers in the 
largest block is as small as possible.           
i.e. find spots for up to k-1 dividers
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Greedy approach

n Ideal size would be P=

n Greedy: walk along until what you have so 
far adds up to P then insert a divider

n Problem: it may not be exact (or correct)

100  200  400  500  900  700  600  800  600

n sum is 4800 so if k=3 size must be at least 1600.
n Greedy?  Best?

∑
n

i
i=1

s/k
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Recursive solution

n Try all possible values for the position of 
the last divider

n For each position of this last divider
n there are k-2 other dividers that must 

divide the list of numbers prior to the last 
divider as evenly as possible 
n s1,...,s i1

|s i1+1...si2|s i2+1... sik-1
|s ik-1+1...sn

n recursive sub-problem of the same type
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Recursive idea

n Let M[n,k] the smallest cost (size of largest 
block) of any partition of the first n #’s into k
pieces.

n If best position for last divider lies between 

the ith and i+1st then

M[n,k]= max ( M[i,k-1] ,         )

n In general 

M[n,k]= mini<n max ( M[i,k-1] ,         )

n Base case(s)?

∑
n

j
j=i+1

s

∑
n

j
j=i+1

s

cost of last block
max cost of 1st k-1 blocks
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Time-saving - prefix sums

n Computing the costs of the blocks may be 
expensive and involved repeated work

n Idea: Pre-compute prefix sums
n Length of block

s i+1+... + s j

is just 

p[j]-p[i]

n Cost: n additions

p[1]=s1

p[2]=s1+s2

p[3]=s1+s2+s3 

...   
p[n]=s1+s2+...+sn
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Linear Partition Algorithm

Partition(S,k):                                            
p[0]←0; 
for i=1 to n do p[i] ←p[i-1]+si

for i=1 to n do M[i,1] ←p[i] 

for j=1 to k do M[1,j] ← s1

for i=2 to n do                                        
for j=2 to k do                                       

M[i,j] ← minpos<i{max(M[pos,j-1], p[i]-p[pos])}          
D[i,j ] ← value of pos where min is achieved
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Linear Partition Algorithm

Partition(S,k):                                            
p[0]←0; 
for i=1 to n do p[i] ←p[i-1]+si

for i=1 to n do M[i,1] ←p[i] 
for j=1 to k do M[1,j] ← s1

for i=2 to n do                                        
for j=2 to k do                                       

M[i,j]←∞
for pos=1 to i-1 do

s←max(M[pos,j-1], p[i]-p[pos])
if M[i,j ]>s then

M[i,j] ←s ; D[i,j] ←pos
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Example:

600
800
600
700
900
500
400
200
100

321
Partition(S,k): 

p[0]←0; 
for i=1 to n do p[i] ←p[i-1]+si
for i=1 to n do M[i,1] ←p[i] 
for j=1 to k do M[1,j] ← s1

for i=2 to n do 
for j=2 to k do  

M[i,j] ← minpos <i{max(M[pos,j-1],
p[i]-p[pos])}

D[i,j ] ← value of pos where min
is achieved
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Example:

4800600

4200800

3400600

2800700

2100900

1200500

700400

300200

100100100100
321

Partition(S,k): 
p[0]←0; 
for i=1 to n do p[i] ←p[i-1]+si
for i=1 to n do M[i,1] ←p[i] 
for j=1 to k do M[1,j] ← s1

for i=2 to n do 
for j=2 to k do  

M[i,j] ← minpos< i{max(M[pos,j-1],
p[i]-p[pos])}

D[i,j] ← value of pos where min
is achieved
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Example:

27004800600

21004200800

21003400600

120016002800700

90012002100900

5007001200500

400400700400

200200300200

100100100100
321

Partition(S,k): 
p[0]←0; 
for i=1 to n do p[i] ←p[i-1]+si
for i=1 to n do M[i,1] ←p[i] 
for j=1 to k do M[1,j] ← s1

for i=2 to n do 
for j=2 to k do  

M[i,j] ← minpos< i{max(M[pos,j-1],
p[i]-p[pos])}

D[i,j] ← value of pos where min
is achieved
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Example:

200027004800600

160021004200800

130021003400600

120016002800700

90012002100900

5007001200500

400400700400

200200300200

100100100100
321

Partition(S,k): 
p[0]←0; 
for i=1 to n do p[i] ←p[i-1]+si
for i=1 to n do M[i,1] ←p[i] 
for j=1 to k do M[1,j] ← s1

for i=2 to n do 
for j=2 to k do  

M[i,j] ← minpos <i{max(M[pos,j-1],
p[i]-p[pos])}

D[i,j ] ← value of pos where min
is achieved


