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Reading assignment
= Read sections 3.1-3.2 of The
ALGORITHM Design Manual

Some Algorithm Design

Some Algorithm Design
4 Techniques, Il

= Divide & Conquer

= Reduce problem to one or more sub-problems of
the same type
= Typically, each sub-problem is at most a constant
fraction of the size of the original problem
= e.g. Mergesort, Binary Search, Strassen’s

Algorithm (we’ll see this later), Quicksort (kind
of)

4 Techniques, |
= General overall idea
= Reduce solving a problem to a smaller problem or
problems of the same type
= Greedy algorithms
= Used when one needs to build something a piece
at a time
= Repeatedly make the greedy choice - the one that
looks the best right away
= e.g. closest pair in TSP search
= Usually fast if they work (but often don't)
Some Algorithm Design

Techniques, Il
= Dynamic Programming

= Give a solution of a problem using smaller
sub-problems where all the possible
sub-problems are determined in advance

= Usefulwhen the same sub-problems show
up again and again in the solution

A simple case:

#  Computing Fibonacci Numbers
P

= Recall F=F, +F, and F=0, F,=1

= Recursive algorithm:
= Fibo(n)
if n=0 then return(0)
else if n=1 then return(1)
else return(Fibo(n-1)+Fibo(n-2))
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Memo -ization (Caching)

= Remember all values from previous
recursive calls

= Before recursive call, test to see if value
has already been computed

= Dynamic Programming

= Convert memo-ized algorithm from a
recursive one to an iterative one

‘ Version

Fibonacci - Dynamic Programming

= FiboDP (n):
F[O]- O
F[1]-1
fori=2ton do
Flil=F[i-1+F[i-2]

Dynamic Programming

= Useful when

= Same recursive sub-problems occur
repeatedly

= Can anticipate the parameters of these
recursive calls

= The solution to whole problem can be
figured out with knowing the internal details
of how the sub-problems are solved
= principle of optimality
“Optimal solutions to the sub-problems suffice for
optimal solution to the whole problem”

endfor

return(F[n])
4 List partition problem
-

= Given: a sequence of n positive integers
S,,---,S, and a positive integer k

= Find: a partition of the list into up to k
blocks:
S10Si|Sije1-+S,ISie1e- Siy, |
so that the sum of the numbers in the
largest block is as small as possible.
i.e. find spots for up to k-1 dividers

S, +1--Sn
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Greedy approach

= Ideal size would be P= é s/k

i=1

= Greedy: walk along until what you have so
far adds up to Pthen insert a divider

= Problem: it may not be exact (or correct)

100 200 400 500 900 700 600 800 600

= sum is 4800 so if k=3 size must be at least 1600.
= Greedy? Best?

Recursive solution
= Try all possible values for the position of
the last divider

= For each position of this last divider

= there are k-2 other dividers that must
divide the list of numbers prior to the last

divider as evenly as possible
* S10nSISi,41---5, IS Sis [Sius1+-Sn

i+l " ik

= recursive sub-problem of the same type

Recursive idea

Let M[n,k] the smallest cost (size of largest
block) of any partition of the first n #'s into k
pieces.

= If best position for last divider lies between
max cost of 1st k1 blocks

the it and i+1st then /

0/ cost of last block

M[n,kl= max ( Mfik-1], & Sj)
j=i+1
= In general J

M[n,k]= min_, max (M[ik-1], & s;)
= Base case(s)? -

3

Time-saving - prefix sums

= Computing the costs of the blocks may be
expensive and involved repeated work

= |dea: Pre-compute prefix sums
= Length of block

S\+1+"' + S] p[l]ZSl
is just p[2}=s,+s,
S 3]=s,*s,+s
pll-pli PIBI=Sy 7575

« Cost: n additions

plnl=s, +s,+...+s,
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Linear Partition Algorithm
Partition(S,k):
p[0]- O;
for i=1ton do p[i] = p[i-1]+s;
for i=1ton do M[i,1] - p[i]
for j=1to kdo M[1,j]-~ s,
fori=2ton do
forj=2 to k do

M, = mingesi{max(M[pos.j-1], p[i]-p[pos])}
D[i,j] = value of pos where min is achieved

\

Linear Partition Algorithm

Partition(S,k):
p[0]- O;
for i=1 to n do p[i] = p[i-1]+s;
for i=1 ton do M[i,1] - p[i]
forj=1to kdo M[1,j]~ s;
fori=2 ton do
forj=2to k do
M[i,j]- ¥
forpos=1toi-1do
s~ max(M[pos,j-1], p[i]-p[pos])
if M[i,j]>s then
M[i,] = s; D[i,j] -~ pos
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