
1

1

CSE 417: Algorithms and
Computational
Complexity

Dynamic Programming

Autumn 2002
Paul Beame

2

Reading assignment

n Read sections 3.1-3.2 of The
ALGORITHM Design Manual

3

Some Algorithm Design
Techniques, I

n General overall idea
n Reduce solving a problem to a smaller problem or

problems of the same type

n Greedy algorithms
n Used when one needs to build something a piece

at a time
n Repeatedly make the greedy choice - the one that

looks the best right away
n e.g. closest pair in TSP search

n Usually fast if they work (but often don't)

4

Some Algorithm Design
Techniques, II

n Divide & Conquer
n Reduce problem to one or more sub-problems of

the same type

n Typically, each sub-problem is at most a constant
fraction of the size of the original problem
n e.g. Mergesort, Binary Search, Strassen’s

Algorithm (we’ll see this later), Quicksort (kind
of)

5

Some Algorithm Design
Techniques, III

n Dynamic Programming
n Give a solution of a problem using smaller

sub-problems where all the possible
sub-problems are determined in advance

n Useful when the same sub-problems show
up again and again in the solution

6

A simple case:
Computing Fibonacci Numbers

n Recall Fn=Fn-1+Fn-2 and F0=0, F1=1

n Recursive algorithm:
n Fibo(n)

if n=0 then return(0)
else if n=1 then return(1)
else return(Fibo(n-1)+Fibo(n-2))

2

7

Call tree - start

F (6)

F (5) F (4)

F (3)

F (4)

F (2)

F (2)

F (3)

F (1) F (0)

1 0

F (1)

8

Full call tree

F (6)

F (2)

F (5) F (4)

F (3)

F (4)

F (2)

F (2)

F (3)F (3)

F (1) F (0)

1 0

F (0)

01

F (1)

F (1) F (0)

1 0F (1)

F (2) F (1)

1
F (0)

1 0

F (2) F (1)

1
F (0)

1 0

F (1)

1

F (1)

9

Memo-ization (Caching)

n Remember all values from previous
recursive calls

n Before recursive call, test to see if value
has already been computed

n Dynamic Programming
n Convert memo-ized algorithm from a

recursive one to an iterative one

10

Fibonacci - Dynamic Programming
Version

n FiboDP(n):
F[0]← 0
F[1] ←1
for i=2 to n do

F[i]=F[i-1]+F[i-2]
endfor
return(F[n])

11

Dynamic Programming

n Useful when
n same recursive sub-problems occur

repeatedly
n Can anticipate the parameters of these

recursive calls
n The solution to whole problem can be

figured out with knowing the internal details
of how the sub-problems are solved
n principle of optimality

“Optimal solutions to the sub-problems suffice for
optimal solution to the whole problem”

12

List partition problem

n Given: a sequence of n positive integers
s1,...,sn and a positive integer k

n Find: a partition of the list into up to k
blocks:
s1,...,s i1

|si1+1...si2
|si2+1... sik-1

|sik-1+1...sn

so that the sum of the numbers in the
largest block is as small as possible.
i.e. find spots for up to k-1 dividers

3

13

Greedy approach

n Ideal size would be P=

n Greedy: walk along until what you have so
far adds up to P then insert a divider

n Problem: it may not be exact (or correct)

100 200 400 500 900 700 600 800 600

n sum is 4800 so if k=3 size must be at least 1600.
n Greedy? Best?

∑
n

i
i=1

s/k

14

Recursive solution

n Try all possible values for the position of
the last divider

n For each position of this last divider
n there are k-2 other dividers that must

divide the list of numbers prior to the last
divider as evenly as possible
n s1,...,s i1

|s i1+1...si2|s i2+1... sik-1
|s ik-1+1...sn

n recursive sub-problem of the same type

15

Recursive idea

n Let M[n,k] the smallest cost (size of largest
block) of any partition of the first n #’s into k
pieces.

n If best position for last divider lies between

the ith and i+1st then

M[n,k]= max (M[i,k-1] ,)

n In general

M[n,k]= mini<n max (M[i,k-1] ,)

n Base case(s)?

∑
n

j
j=i+1

s

∑
n

j
j=i+1

s

cost of last block
max cost of 1st k-1 blocks

16

Time-saving - prefix sums

n Computing the costs of the blocks may be
expensive and involved repeated work

n Idea: Pre-compute prefix sums
n Length of block

s i+1+... + s j

is just

p[j]-p[i]

n Cost: n additions

p[1]=s1

p[2]=s1+s2

p[3]=s1+s2+s3

...
p[n]=s1+s2+...+sn

17

Linear Partition Algorithm

Partition(S,k):
p[0]←0;
for i=1 to n do p[i] ←p[i-1]+si

for i=1 to n do M[i,1] ←p[i]

for j=1 to k do M[1,j] ← s1

for i=2 to n do
for j=2 to k do

M[i,j] ← minpos<i{max(M[pos,j-1], p[i]-p[pos])}
D[i,j] ← value of pos where min is achieved

18

Linear Partition Algorithm

Partition(S,k):
p[0]←0;
for i=1 to n do p[i] ←p[i-1]+si

for i=1 to n do M[i,1] ←p[i]
for j=1 to k do M[1,j] ← s1

for i=2 to n do
for j=2 to k do

M[i,j]←∞
for pos=1 to i-1 do

s←max(M[pos,j-1], p[i]-p[pos])
if M[i,j]>s then

M[i,j] ←s ; D[i,j] ←pos

4

19

Example:

600
800
600
700
900
500
400
200
100

321
Partition(S,k):

p[0]←0;
for i=1 to n do p[i] ←p[i-1]+si
for i=1 to n do M[i,1] ←p[i]
for j=1 to k do M[1,j] ← s1

for i=2 to n do
for j=2 to k do

M[i,j] ← minpos <i{max(M[pos,j-1],
p[i]-p[pos])}

D[i,j] ← value of pos where min
is achieved

20

Example:

4800600

4200800

3400600

2800700

2100900

1200500

700400

300200

100100100100
321

Partition(S,k):
p[0]←0;
for i=1 to n do p[i] ←p[i-1]+si
for i=1 to n do M[i,1] ←p[i]
for j=1 to k do M[1,j] ← s1

for i=2 to n do
for j=2 to k do

M[i,j] ← minpos< i{max(M[pos,j-1],
p[i]-p[pos])}

D[i,j] ← value of pos where min
is achieved

21

Example:

27004800600

21004200800

21003400600

120016002800700

90012002100900

5007001200500

400400700400

200200300200

100100100100
321

Partition(S,k):
p[0]←0;
for i=1 to n do p[i] ←p[i-1]+si
for i=1 to n do M[i,1] ←p[i]
for j=1 to k do M[1,j] ← s1

for i=2 to n do
for j=2 to k do

M[i,j] ← minpos< i{max(M[pos,j-1],
p[i]-p[pos])}

D[i,j] ← value of pos where min
is achieved

22

Example:

200027004800600

160021004200800

130021003400600

120016002800700

90012002100900

5007001200500

400400700400

200200300200

100100100100
321

Partition(S,k):
p[0]←0;
for i=1 to n do p[i] ←p[i-1]+si
for i=1 to n do M[i,1] ←p[i]
for j=1 to k do M[1,j] ← s1

for i=2 to n do
for j=2 to k do

M[i,j] ← minpos <i{max(M[pos,j-1],
p[i]-p[pos])}

D[i,j] ← value of pos where min
is achieved

