

Some Algorithm Design
 Techniques, I

- General overall idea
- Reduce solving a problem to a smaller problem or problems of the same type
- Greedy algorithms
- Used when one needs to build something a piece at a time
- Repeatedly make the greedy choice - the one that looks the best right away
- e.g. closest pair in TSP search
- Usually fast if they work (but often don't)

Some Algorithm Design Techniques, III

- Dynamic Programming
- Give a solution of a problem using smaller sub-problems where all the possible sub-problems are determined in advance
- Useful when the same sub-problems show up again and again in the solution

Memo-ization (Caching)	
	Remember all values from previous recursive calls
	Before recursive call, test to see if value has already been computed
	- Dynamic Programming - Convert memo-ized algorithm from a recursive one to an iterative one

Dynamic Programming

- Useful when
- same recursive sub-problems occur repeatedly

Given: a sequence of n positive integers $\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{n}}$ and a positive integer k

- Can anticipate the parameters of these recursive calls
- The solution to whole problem can be figured out with knowing the internal details of how the sub-problems are solved
- principle of optimality
"Optimal solutions to the sub-problems suffice for optimal solution to the whole problem"

List partition problem

Find: a partition of the list into up to k blocks:
$s_{1}, \ldots, s_{i}\left|s_{i_{1}+1} \ldots s_{i 2}\right| s_{i_{2}+1} \ldots s_{i_{k-1}} \mid s_{i_{k+1}+1} \ldots s_{n}$ so that the sum of the numbers in the largest block is as small as possible. i.e. find spots for up to $k-1$ dividers

Recursive idea

- Let $M[n, k]$ the smallest cost (size of largest block) of any partition of the first n \#'s into k pieces.
- If best position for last divider lies between the $i^{\text {th }}$ and $i+1^{\text {st }}$ then
max cost of 1 st k1 blocks

$$
M[n, k]=\max \left(M[i, k-1], \sum_{j=i+1}^{n} s_{j}\right)
$$

- In general
$M[n, k]=\min _{i<n} \max \left(M[i, k-1], \sum_{j=i+1}^{n} s_{j}\right)$
- Base case(s)?

Linear Partition Algorithm

Linear Partition Algorithm

Partition($\mathbf{S}, \mathbf{k})$:

$\mathrm{p}[0] \leftarrow 0$;
for $\mathbf{i}=\mathbf{1}$ to \mathbf{n} do $\mathbf{p}[\mathbf{i}] \leftarrow \mathbf{p}[\mathbf{i}-1]+\mathbf{s}_{\mathbf{i}}$
for $\mathbf{i}=\mathbf{1}$ to \mathbf{n} do $\mathbf{M}[\mathbf{i}, \mathbf{1}] \leftarrow \mathbf{p}[\mathbf{i}]$
for $\mathbf{j}=\mathbf{1}$ to \mathbf{k} do $\mathbf{M}[\mathbf{1 , j}] \leftarrow \mathbf{s}_{\mathbf{1}}$
for $\mathbf{i}=\mathbf{2}$ to \mathbf{n} do
for $\mathbf{j}=\mathbf{2}$ to \mathbf{k} do
$\mathrm{M}[\mathrm{i}, \mathrm{j}] \leftarrow \infty$
for pos=1 to i-1 do
$\mathbf{S} \leftarrow \max (\mathbf{M}[\mathrm{pos}, \mathrm{j}-1], \mathrm{p}[\mathrm{i}]-\mathrm{p}[\mathrm{pos}])$
if $\mathbf{M}[i, j]>s$ then

$$
\mathbf{M}[i, j] \leftarrow \mathbf{s} ; \mathbf{D}[\mathrm{i}, \mathrm{j}] \leftarrow \mathrm{pos}
$$

Example:				
	1	2	3	
100	100	100	100	Partition(S, \mathbf{k}): $\mathrm{p}[0] \leftarrow 0$; for $\mathbf{i}=\mathbf{1}$ to \mathbf{n} do $\mathbf{p}[\mathbf{i}] \leftarrow \mathbf{p}[\mathbf{i - 1}]+\mathbf{s}_{\mathbf{i}}$
200	300			
400	700			
500	1200			for $\mathbf{i} \mathbf{2}$ to \mathbf{n} do for $\mathbf{j}=\mathbf{2}$ to \mathbf{k} do $\begin{aligned} & \mathrm{M}[i, j] \leftarrow \min _{\text {pos<i }}\{\max (\mathrm{M}[\mathrm{pos}, \mathrm{j}-1], \\ &\mathrm{p}[\mathrm{i}]-\mathrm{p}[\mathrm{pos}])\} \\ & \mathrm{D}[\mathrm{i}, \mathrm{j}] \leftarrow \\ & \text { value of pos where min } \\ & \text { is achieved } \end{aligned}$
900	2100			
700	2800			
600	3400			
800	4200			
600	4800			20

Example:				
	1	2	3	
100	100	100	100	Partition(\mathbf{S}, \mathbf{k}) $\mathrm{p}[0] \leftarrow 0$; for $\mathbf{i}=\mathbf{1}$ to \mathbf{n} do $\mathbf{p}[\mathbf{i}] \leftarrow \mathbf{p}[\mathbf{i}-1]+\mathbf{s}$ for $=\mathbf{1}$ to \mathbf{n} do $\mathbf{M}[\mathbf{i}, \mathbf{1}] \leftarrow \mathbf{p}[\mathbf{i}]$ for $\mathbf{j}=\mathbf{1}$ to \mathbf{k} do $\mathbf{M}[\mathbf{1}, \mathbf{j}] \leftarrow \mathbf{s}_{\mathbf{1}}$
200	300	200	200	
400	700	400	400	
500	1200	700	500	$=\mathbf{2}$ to \mathbf{n} do for $j=2$ to \mathbf{k} do $\mathbf{M}[\mathrm{i}, \mathrm{j}] \leftarrow \min _{\mathrm{pos}<1}\left\{\begin{array}{r}\max (\mathbf{M}[\mathrm{pos}, \mathrm{j}-1], \\ \mathrm{p}[\mathrm{i}]-\mathrm{p}[\text { pos }])\}\end{array}\right.$ $\mathrm{D}[\mathrm{i}, \mathrm{j}] \leftarrow \begin{aligned} & \text { value of pos where min } \\ & \text { is achieved }\end{aligned}$
900	2100	1200	900	
700	2800	1600	1200	
600	3400	2100		
800	4200	2100		
600	4800	2700		21

Example:				
	1	2	3	
100	100	100	100	$\mathrm{p}[0] \leftarrow 0$
200	300	200	200	(e)
400	700	400	400	for $\mathrm{E}=2$ to n do
500	1200	700	500	for $\mathbf{j}=\mathbf{2}$ to \mathbf{k} do
900	2100	1200	900	D[i] < value of pos wherer min
700	2800	1600	1200	
600	3400	2100	1300	
800	4200	2100	1600	
600	4800	2700	2000	22

