CSE 417: Algorithms and
Computational
Complexity

Dynamic Programming

Autumn 2002
Paul Beame

Reading assignment
= Read sections 3.1-3.2 of The
ALGORITHM Design Manual

Some Algorithm Design

Some Algorithm Design
4 Techniques, Il

= Divide & Conquer

= Reduce problem to one or more sub-problems of
the same type
= Typically, each sub-problem is at most a constant
fraction of the size of the original problem
= e.g. Mergesort, Binary Search, Strassen’s

Algorithm (we’ll see this later), Quicksort (kind
of)

4 Techniques, |
= General overall idea
= Reduce solving a problem to a smaller problem or
problems of the same type
= Greedy algorithms
= Used when one needs to build something a piece
at a time
= Repeatedly make the greedy choice - the one that
looks the best right away
= e.g. closest pair in TSP search
= Usually fast if they work (but often don't)
Some Algorithm Design

Techniques, Il
= Dynamic Programming

= Give a solution of a problem using smaller
sub-problems where all the possible
sub-problems are determined in advance

= Usefulwhen the same sub-problems show
up again and again in the solution

A simple case:

Computing Fibonacci Numbers
P

= Recall F=F, +F, and F=0, F,=1

= Recursive algorithm:
= Fibo(n)
if n=0 then return(0)
else if n=1 then return(1)
else return(Fibo(n-1)+Fibo(n-2))

7

|
1

Call tree - start

F(5) F(4)

F@) F (@)

7/ N\
F FO

/\

F@1) F©O
|

0

1 Full call tree

F(6)
F (5) F(4|)
F@) F(3) F |(3)\ F@)
— \ Fo fo / 0\
F @) F@ ;2)\ F @) I F@) F (0)
7\ ! !
F@Q FQ /\ Fy Fol Ffl) FI(O) 0
1 F@) FO)
/\ 1 I 1' 0' 1 0

F@1) F(©) 1 0
| |

1 0

Memo -ization (Caching)

= Remember all values from previous
recursive calls

= Before recursive call, test to see if value
has already been computed

= Dynamic Programming

= Convert memo-ized algorithm from a
recursive one to an iterative one

‘ Version

Fibonacci - Dynamic Programming

= FiboDP (n):
F[O]- O
F[1]-1
fori=2ton do
Flil=F[i-1+F[i-2]

Dynamic Programming

= Useful when

= Same recursive sub-problems occur
repeatedly

= Can anticipate the parameters of these
recursive calls

= The solution to whole problem can be
figured out with knowing the internal details
of how the sub-problems are solved
= principle of optimality
“Optimal solutions to the sub-problems suffice for
optimal solution to the whole problem”

endfor

return(F[n])
4 List partition problem
-

= Given: a sequence of n positive integers
S,,---,S, and a positive integer k

= Find: a partition of the list into up to k
blocks:
S10Si|Sije1-+S,ISie1e- Siy, |
so that the sum of the numbers in the
largest block is as small as possible.
i.e. find spots for up to k-1 dividers

S, +1--Sn

.

Greedy approach

= Ideal size would be P= é s/k

i=1

= Greedy: walk along until what you have so
far adds up to Pthen insert a divider

= Problem: it may not be exact (or correct)

100 200 400 500 900 700 600 800 600

= sum is 4800 so if k=3 size must be at least 1600.
= Greedy? Best?

Recursive solution
= Try all possible values for the position of
the last divider

= For each position of this last divider

= there are k-2 other dividers that must
divide the list of numbers prior to the last

divider as evenly as possible
* S10nSISi,41---5, IS Sis [Sius1+-Sn

i+l " ik

= recursive sub-problem of the same type

Recursive idea

Let M[n,k] the smallest cost (size of largest
block) of any partition of the first n #'s into k
pieces.

= If best position for last divider lies between
max cost of 1st k1 blocks

the it and i+1st then /

0/ cost of last block

M[n,kl= max (Mfik-1], & Sj)
j=i+1
= In general J

M[n,k]= min_, max (M[ik-1], & s;)
= Base case(s)? -

3

Time-saving - prefix sums

= Computing the costs of the blocks may be
expensive and involved repeated work

= |dea: Pre-compute prefix sums
= Length of block

S\+1+"' + S] p[l]ZSl
is just p[2}=s,+s,
S 3]=s,*s,+s
pll-pli PIBI=Sy 7575

« Cost: n additions

plnl=s, +s,+...+s,

16

Linear Partition Algorithm
Partition(S,k):
p[0]- O;
for i=1ton do p[i] = p[i-1]+s;
for i=1ton do M[i,1] - p[i]
for j=1to kdo M[1,j]-~ s,
fori=2ton do
forj=2 to k do

M, = mingesi{max(M[pos.j-1], p[i]-p[pos])}
D[i,j] = value of pos where min is achieved

\

Linear Partition Algorithm

Partition(S,k):
p[0]- O;
for i=1 to n do p[i] = p[i-1]+s;
for i=1 ton do M[i,1] - p[i]
forj=1to kdo M[1,j]~ s;
fori=2 ton do
forj=2to k do
M[i,j]- ¥
forpos=1toi-1do
s~ max(M[pos,j-1], p[i]-p[pos])
if M[i,j]>s then
M[i,] = s; D[i,j] -~ pos

4 Example
1l 2| 3
100 Partition(S k):
200 fch?]izloio n do p[i] - pli-1]+s,
400 g :Zi :g E ddcl))hhflﬁ[[iill]]: DsF]
500 O iz k o
M[i,j] = min,, ({max(M[pos.j-1],
o0 - g AT
600
800
600 ;
4 Example:
1] 2] 3
100[{100 [100 |100 | "ierSe
200[300 [200 [200 | foiienandy i
200|700 200 400 fori:l(okdoM[l,j]ﬁ s,
500[1200 | 700 |[500 O % o
700/2800 {1600 [1200 i achieved
6003400 | 2100
800[4200 2100
6004800 | 2700)

Example:
1 2 3
Partition(S,k):

100(100 (100 ([100 plOl- O;

fori=1to n do p[i] - p[i-1]+s,
200|300 for i=1to n do M[i,1] - pf]

forj=1to k do M[1,j] = s
400 700 for \=2Fon do
500{1200 for];ﬁzﬂr])fdr?\m‘]]]]] {maxM[pos,j-1],
900{2100 Dl ~ value of pos b poe)
700 2800 is achieved
600| 3400
800|4200
600|4800

Example:
i o 3|

100100 [100 [100 | vo-e

EIE St
200 300 200 200 fDr]:ltdeOM[l:J]'\ s,
400 700 400 400 fori=2to n do

for j=2 to k do

500 1200 700 500 f IM[%JI]ﬁ m\npv,_vq{max(M[pos‘J-l].
900|2100 |1200 | 900 D01~ vaie o pos where i
7002800 [1600 [1200 e
600]3400 (2100 | 1300
800]4200 (2100 | 1600
600]4800 (2700 | 2000

