
1

1

CSE 417: Algorithms and
Computational
Complexity

Complexity Analysis & Sorting

Autumn 2002
Paul Beame

2

Reading assignment

n Read Chapter 2 of The ALGORITHM
Design Manual

3

Complexity analysis

n Problem size n
n Worst-case complexity: max # steps

algorithm takes on any input of size n
n Best-case complexity:min # steps

algorithm takes on any input of size n
n Average -case complexity: avg # steps

algorithm takes on inputs of size n

4

Complexity

n The complexity of an algorithm associates a
number T(n), the best/worst/average-case
time the algorithm takes, with each problem
size n.

n Mathematically,

n T: N+ → R+

n that is T is a function that maps positive
integers giving problem size to positive real
numbers giving number of steps.

5

Complexity

Problem size

Ti
m

e

T(n)

6

Why Worst-Case Analysis?

n Appropriate for time-critical applications, e.g.
avionics

n Unlike Average-Case, no debate about what
the right definition is

n Analysis often easier

n Result is often representative of "typical"
problem instances

n Of course there are exceptions…

2

7

O-notation etc

n Given two functions f and g:N→R
n f(n) is O(g(n)) iff there is a constant c>0 so

that f(n) is eventually
always ≤ c g(n)

n f(n) is Ω(g(n)) iff there is a constant c>0 so
that f(n) is eventually
always≥ c g(n)

n f(n) is Θ(g(n)) iff there is are constants c1 and c2>0
so that eventually always
c1g(n) ≤ f(n) ≤ c2g(n)

8

Complexity

Problem size

Ti
m

e

T(n)

n log2n

2n log2n

9

Examples

n 10n2-16n+100 is O(n2) also O(n3)
n 10n2-16n+100 ≤ 11n2 for all n ≥ 10

n 10n2-16n+100 is Ω (n2) also Ω (n)
n 10n2-16n+100 ≥ 9n2 for all n ≥16

n Therefore also 10n2-16n+100 is Θ(n2)

n 10n2-16n+100 is not O(n) also not Ω(n3)

n Note: I don’t use notation f(n)=O(g(n))

10

Working with O-Ω-Θ notation

n Claim: For any a, b>1 logan is Θ(logbn)
n logan=logab × logbn so letting c=logab we get

that clogbn ≤ logan ≤ clogbn

n Claim: For any a and b>0, (n+a)b is Θ(nb)
n (n+a)b ≤ (2n)b for n ≥ |a|

= 2bnb = cnb for c=2b so (n+a)b is O(nb)

n (n+a)b ≥ (n/2)b for n ≥ 2|a|
=2-bnb =c’n for c’=2-b so (n+a)b is Ω(nb)

11

Complexity Analysis

n We have looked at
n type of complexity analysis

n worst-case, best-case, average-case
n types of function bounds

n O, Ω , Θ

n These two considerations are
orthogonal to each other
n one can do any type of function bound with

any type of complexity analysis

12

Complexity analysis overview

Alg
A

different running
time for each
input string

Type of
Complexity
Analysis

Function mapping
input length to

running time

Type of
Bound

T(n) grows
like nlog 2n

Nice formula
approximating
runtime of A

Usually we represent the function in the middle using
a recurrence relation rather than explicitly

3

13

General algorithm design paradigm

n Find a way to reduce your problem to
one or more smaller problems of the
same type

n When problems are really small solve
them directly

14

Example

n Mergesort
n on a problem of size at least 2

n Sort the first half of the numbers
n Sort the second half of the numbers
n Merge the two sorted lists

n on a problem of size 1 do nothing

15

Cost of Merge

n Given two lists to merge size n and m
n Maintain pointer to head of each list
n Move smaller element to output and advance

pointer
n

m

n+m

Worst case n+m-1 comparisons
Best case min(n,m) comparisons 16

Recurrence relation for Mergesort

n In total including other operations let’s say
each merge costs 3 per element output

n T(n)=T(n/2)+T(n/2)+3n for n≥2
n T(1)=1
n Can use this to figure out T for any value of n

n T(5)=T(3)+T(2)+3x5
=(T(2)+T(1)+3x3)+(T(1)+T(1)+3x2)+15
=((T(1)+T(1)+3x2)+1+9)+(1+1+6)+15
=8+10+8+15=41

n T(n)= 3n log2n

“ceiling” round up

“floor” round down

17

Insertion Sort

n For i=2 to n do
j←i
while(j>1 & X[j] > X[j-1]) do

swap X[j] and X[j-1]

n i.e., For i=2 to n do
Insert X[i] in the sorted list

X[1],...,X[i-1]

18

Recurrence relation for Insertion Sort

n Let Tn(i) be the worst case cost of creating
list that has first i elements sorted out of n.
n We want to know Tn(n)

n The insertion of X[i] makes up to i-1
comparisons in the worst case

n Tn(i)=Tn(i-1)+i-1 for i>1
n Tn(1)=0 since a list of length 1 is always

sorted
n Therefore Tn(n)=n(n-1)/2

4

19

Solving recurrence relations

n e.g. T(n)=T(n-1)+f(n) for n ≥ 1
T(0)=0

n solution is T(n)=

n Insertion sort: Tn(i)=Tn(i-1)+i-1

n so Tn(n)= =n(n-1)/2

n

i
f i∑ =1
()

n
i 1∑ i=1

(-)

20

Arithmetic Series

n S= 1 + 2 + 3 + ... + (n-1)
n S= (n-1)+(n-2)+(n-3)+ ... + 1
n 2S=n + n + n + + n {n-1 terms}

n 2S=n(n-1)
n so S=n(n-1)/2

n Works generally when f(i)=a⋅i+b for all i
n Sum = average term size × # of terms

21

Quicksort

n Quicksort(X,left,right)
if left < right

split=Partition(X, left, right)
Quicksort(X, left, split-1)
Quicksort(X, split+1, right)

22

Partition - two finger algorithm

n Partition(X, left,right)
choose a random element to be a pivot and

pull it out of the array, say at left end
maintain two fingers starting at each end of

the array
slide them towards each other until you get a

pair of elements where right finger has
a smaller element and left finger has a
bigger one (when compared to pivot)

swap them and repeat until fingers meet
put the pivot element where they meet

23

Partition - two finger algorithm

n Partition(X,left,right)
swap X[left], X[random(left, right)]

pivot ← X[left]; L ← left; R ←right
while L<R do

while (X[L] ≤ pivot & L ≤ right) do
L ← L+1

while (X[R] > pivot & R ≥ left) do
R ← R-1

if L>R then swap X[L],X[R]
swap X[left],X[R]
return R

24

In practice

n often choose pivot in fixed way as
n middle element for small arrays
n median of 1st, middle, and last for larger arrays
n median of 3 medians of 3 (9 elements in all) for

largest arrays

n four finger algorithm is better
n also maintain two groups at each end of elements

equal to the pivot
n swap them all into middle at the end of Partition

n equal elements are bad cases for two fingers

5

25

Quicksort Analysis

n Partition does n-1 comparisons on a list of
length n
n pivot is compared to each other element

n If pivot is ith largest then two sub-problems
are of size i-1 and n-i
n If pivot is always in the middle get

T(n)=2T(n/2)+n-1 comparisons
n T(n) = nlog2n better than Mergesort

n If pivot is always at the end get
T(n)=T(n-1)+n-1 comparisons
n T(n) = n(n-1)/2 like Insertion Sort

26

Quicksort Analysis Average Case

n Recall
n Partition does n-1 comparisons on a list of

length n
n If pivot is ith largest then two sub-problems

are of size i-1 and n-i

n Pivot is equally likely to be any one of
1st through nth largest

()
=

= − + − + −∑
n

i 1

1
T(n) n 1 T(i 1) T(n i)

n

27

Quicksort analysis

()

2)1)(n(n
2n

1n
T(n)

2n
1)T(n

2n2)T(n)(n1)1)T(n(n
2nT(n) 2nT(n)-1)1)T(n(n

T(n) 2...T(2) 2T(1) 21)n(n1)1)T(n(n

1)-T(n 2...T(2) 2T(1) 21)-n(nnT(n)
n

1)-T(n 2...T(2) 2T(1) 2
 1-n

i)T(n1)T(i
n
1

1nT(n)
n

1i

++
+

+
=

+
+

∴

++=++
+=++∴

+++++=++
++++=∴

+++
+=

−+−+−= ∑
=

28

Quicksort analysis

nn 1.38T(n)

dx) 1/x n that (Recall

n381n 22H
n
1

3
1

2
1

2(1Q(n)

1n
2

Q(n)1)Q(n

1n
T(n)Q(n) Let

2

n

2n

log

ln

ln

1

log.)...

≈∴

=

=≈=++++≤∴

+
+≤+∴

+
=

∫

29

“Gestalt” Analysis of Quicksort

n Look at elements that ended up in
positions j < k of the final sorted array

n The expected # of comparisons in Qsort
= the expected # of j < k such that the jth and

k th elements were compared
= sum j < k Pr[jth and k th elts were compared]

30

Quicksort execution

j k

6

31

“Gestalt” Analysis of Quicksort

n Look at elements that end up in positions
j < k of the final sorted array

n What is the chance that they were compared
to each other during the course of the
algorithm?
n They started off together in the same sub-problem

n They ended up in different sub-problems
n The only time they might have been compared to

each is when they were split into separate sub-
problems

32

“Gestalt” Analysis of Quicksort

n The only time they might have been
compared to each is when they were split into
separate sub-problems
n The only way they could be split in a step is if the

pivot was an element that ended up between jth

and kth in the final sorted array
n The pivot could be jth or kth

n Those are the only cases when they are
compared

n Chances of that happening is 2 out of (k -j+1)
equally likely possibilities

33

Total cost of Quicksort

n Total expected cost

n The contribution for each j is at most

n Total 2n logen = 1.38 n log2n

k j

2

k - j + 1>
∑

e

1 1 1 1
2 + + +…+ 2log n

2 3 4 n
 ≤

