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CSE 417:  Algorithms and 
Computational 
Complexity

Complexity Analysis & Sorting

Autumn 2002
Paul Beame
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Reading assignment

n Read Chapter 2 of  The ALGORITHM 
Design Manual
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Complexity analysis

n Problem size n
n Worst-case complexity: max # steps 

algorithm takes on any input of size n
n Best-case complexity:min # steps 

algorithm takes on any input of size n
n Average -case complexity: avg # steps 

algorithm takes on inputs of size n
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Complexity

n The complexity of an algorithm associates a 
number T(n), the best/worst/average-case 
time the algorithm takes, with each problem 
size n.

n Mathematically,

n T: N+ → R+

n that is T is a function that maps positive 
integers giving problem size to positive real 
numbers giving number of steps.
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Complexity

Problem size 

Ti
m

e

T(n)
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Why Worst-Case Analysis?

n Appropriate for time-critical applications, e.g. 
avionics

n Unlike Average-Case, no debate about what 
the right definition is

n Analysis often easier

n Result is often representative of "typical" 
problem instances

n Of course there are exceptions…
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O-notation etc

n Given two functions f and g:N→R
n f(n) is O(g(n)) iff there is a constant c>0 so        

that f(n) is eventually  
always ≤ c g(n)

n f(n) is Ω(g(n)) iff there is a constant c>0 so        
that f(n) is eventually  
always≥ c g(n)

n f(n) is Θ(g(n)) iff there is are constants c1 and c2>0
so that eventually always
c1g(n) ≤ f(n) ≤ c2g(n)
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Complexity

Problem size 

Ti
m

e

T(n)

n log2n

2n log2n
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Examples

n 10n2-16n+100 is O(n2) also O(n3)
n 10n2-16n+100 ≤ 11n2 for all n ≥ 10

n 10n2-16n+100 is Ω (n2) also Ω (n)
n 10n2-16n+100 ≥ 9n2 for all n ≥16

n Therefore also 10n2-16n+100 is Θ(n2)

n 10n2-16n+100 is not O(n) also not Ω(n3)

n Note: I don’t use notation f(n)=O(g(n))
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Working with O-Ω-Θ notation

n Claim: For any a, b>1 logan is Θ(logbn)
n logan=logab × logbn so letting c=logab we get 

that  clogbn ≤ logan ≤ clogbn

n Claim: For any a and b>0,  (n+a)b is Θ(nb)
n (n+a)b ≤ (2n)b for n ≥ |a|

= 2bnb = cnb for c=2b so (n+a)b is O(nb)

n (n+a)b ≥ (n/2)b for n ≥ 2|a|
=2-bnb =c’n for c’=2-b so (n+a)b is Ω(nb)
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Complexity Analysis

n We have looked at
n type of complexity analysis

n worst-case, best-case, average-case
n types of function bounds

n O, Ω , Θ

n These two considerations are 
orthogonal to each other
n one can do any type of function bound with 

any type of complexity analysis
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Complexity analysis overview

Alg
A

different running
time for each
input string

Type of
Complexity
Analysis

Function mapping 
input length to 

running time

Type of 
Bound

T(n) grows 
like nlog 2n

Nice formula
approximating
runtime of A

Usually we represent the function in the middle using
a recurrence relation rather than explicitly
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General algorithm design paradigm

n Find a way to reduce your problem to 
one or more smaller problems of the 
same type

n When problems are really small solve 
them directly
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Example

n Mergesort
n on a problem of size at least 2

n Sort the first half of the numbers
n Sort the second half of the numbers
n Merge the two sorted lists

n on a problem of size 1 do nothing

15

Cost of Merge

n Given two lists to merge size n and m
n Maintain pointer to head of each list
n Move smaller element to output and advance 

pointer
n

m

n+m

Worst case n+m-1 comparisons
Best case min(n,m) comparisons 16

Recurrence relation for Mergesort

n In total including other operations let’s say 
each merge costs 3 per element output

n T(n)=T(n/2)+T(n/2)+3n for n≥2
n T(1)=1
n Can use this to figure out T for any value of n

n T(5)=T(3)+T(2)+3x5 
=(T(2)+T(1)+3x3)+(T(1)+T(1)+3x2)+15
=((T(1)+T(1)+3x2)+1+9)+(1+1+6)+15 
=8+10+8+15=41

n T(n)= 3n log2n

“ceiling” round up

“floor” round down
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Insertion Sort

n For i=2 to n do                                             
j←i
while(j>1 & X[ j ] > X[ j-1])  do

swap X[ j ] and X[ j-1]

n i.e.,  For i=2 to n do                                      
Insert X[i] in the sorted list 

X[1],...,X[i-1]
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Recurrence relation for Insertion Sort

n Let Tn(i) be the worst case cost of creating 
list that has first i elements sorted out of n.
n We want to know Tn(n)

n The insertion of X[i] makes up to i-1
comparisons in the worst case

n Tn(i)=Tn(i-1)+i-1 for i>1
n Tn(1)=0 since a list of length 1 is always 

sorted
n Therefore Tn(n)=n(n-1)/2
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Solving recurrence relations

n e.g. T(n)=T(n-1)+f(n) for n ≥ 1
T(0)=0

n solution is T(n)=

n Insertion sort:  Tn(i)=Tn(i-1)+i-1

n so Tn(n)= =n(n-1)/2

n

i
f i∑ =1
( )

n
i 1∑ i=1

( - )
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Arithmetic Series

n S= 1 +    2 + 3 +  ... + (n-1)
n S= (n-1)+(n-2)+(n-3)+  ...  +   1
n 2S=n +   n +    n +   .... + n {n-1 terms}

n 2S=n(n-1)
n so S=n(n-1)/2

n Works generally when f(i)=a⋅i+b for all i
n Sum = average term size × # of terms
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Quicksort

n Quicksort(X,left,right)                                 
if left  < right

split=Partition(X, left, right)                        
Quicksort(X, left, split-1)                 
Quicksort(X, split+1, right)
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Partition - two finger algorithm

n Partition(X, left,right)                                    
choose a random element to be a pivot and 

pull it out of the array, say at left end                       
maintain two fingers starting at each end of  

the array
slide them towards each other until you get a 

pair of elements where right finger has 
a smaller element and left finger has a 
bigger one (when compared to pivot)

swap them and repeat until fingers meet                  
put the pivot element where they meet
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Partition - two finger algorithm

n Partition(X,left,right)                                    
swap X[left], X[random(left, right)]             

pivot ← X[left];  L ← left; R ←right
while L<R do                                        

while (X[L] ≤ pivot & L ≤ right) do    
L ← L+1

while (X[R] > pivot & R ≥ left) do     
R ← R-1                              

if L>R then swap X[L],X[R]          
swap X[left],X[R]                                   
return R
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In practice

n often choose pivot in fixed way as
n middle element for small arrays
n median of 1st, middle, and last for larger arrays
n median of 3 medians of 3 (9 elements in all) for 

largest arrays

n four finger algorithm is better
n also maintain two groups at each end of elements 

equal to the pivot
n swap them all into middle at the end of Partition

n equal elements are bad cases for two fingers
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Quicksort Analysis

n Partition does n-1 comparisons on a list of 
length n
n pivot is compared to each other element

n If pivot is ith largest then two sub-problems
are of size i-1 and n-i
n If pivot is always in the middle get

T(n)=2T(n/2)+n-1 comparisons
n T(n) = nlog2n better than Mergesort

n If pivot is always at the end get
T(n)=T(n-1)+n-1 comparisons
n T(n) = n(n-1)/2 like Insertion Sort
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Quicksort Analysis Average Case

n Recall
n Partition does n-1 comparisons on a list of 

length n
n If pivot is ith largest then two sub-problems

are of size i-1 and n-i

n Pivot is equally likely to be any one of 
1st through nth largest

( )
=

= − + − + −∑
n

i 1

1
T(n) n 1 T(i 1) T(n i)

n
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Quicksort analysis
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Quicksort analysis
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“Gestalt” Analysis of Quicksort

n Look at elements that ended up in 
positions j < k of the final sorted array

n The expected # of comparisons in Qsort
= the expected # of j < k such that the jth and 

k th elements were compared
= sum j < k Pr[jth and k th elts  were compared]

30

Quicksort execution

j k
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“Gestalt” Analysis of Quicksort

n Look at elements that end up in positions        
j < k of the final sorted array

n What is the chance that they were compared 
to each other during the course of the 
algorithm?
n They started off together in the same sub-problem

n They ended up in different sub-problems
n The only time they might have been compared to 

each is when they were split into separate sub-
problems
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“Gestalt” Analysis of Quicksort

n The only time they might have been 
compared to each is when they were split into 
separate sub-problems
n The only way they could be split in a step is if the 

pivot was an element that ended up between jth

and kth in the final sorted array 
n The pivot could be jth or kth

n Those are the only cases when they are 
compared

n Chances of that happening is 2 out of (k -j+1) 
equally likely possibilities 
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Total cost of Quicksort

n Total expected cost

n The contribution for each j is at most

n Total 2n logen = 1.38 n log2n

k j

2

k - j + 1>
∑

e

1 1 1 1
2 + + +…+ 2log n

2 3 4 n
  ≤ 
 


