

Reading assignment

- Read Chapter 2 of The ALGORITHM Design Manual

Complexity analysis

- Problem size n
- Worst-case complexity: max \# steps algorithm takes on any input of size n

Complexity

- The complexity of an algorithm associates a number $\mathrm{T}(\mathrm{n})$, the best/worst/average-case time the algorithm takes, with each problem size n .
- Best-case complexity:min \# steps algorithm takes on any input of size n
- Average -case complexity: avg \# steps algorithm takes on inputs of size n
- Mathematically,
- $\mathrm{T}: \mathrm{N}^{+} \rightarrow \mathrm{R}^{+}$
- that is T is a function that maps positive integers giving problem size to positive real numbers giving number of steps.

Why Worst-Case Analysis?

- Appropriate for time-critical applications, e.g. avionics
- Unlike Average-Case, no debate about what the right definition is
- Analysis often easier
- Result is often representative of "typical" problem instances
- Of course there are exceptions...

O-notation etc

- Given two functions f and $\mathrm{g}: \mathrm{N} \rightarrow \mathrm{R}$
- $f(n)$ is $O(g(n))$ iff there is a constant $c>0$ so that $f(n)$ is eventually always $\leq \mathrm{cg}(\mathrm{n})$
- $\mathbf{f}(\mathbf{n})$ is $\Omega(\mathbf{g}(\mathbf{n}))$ iff there is a constant $\mathbf{c}>0$ so that $f(n)$ is eventually always $\geq \mathbf{c g}(\mathrm{n})$
- $f(n)$ is $\Theta(g(n))$ iff there is are constants c_{1} and $c_{2}>0$ so that eventually always $\mathrm{c}_{1} \mathrm{~g}(\mathrm{n}) \leq \mathrm{f}(\mathrm{n}) \leq \mathrm{c}_{2} \mathrm{~g}(\mathrm{n})$

Complexity Analysis

- We have looked at
- type of complexity analysis
- worst-case, best-case, average-case
- types of function bounds

$$
=\mathrm{O}, \Omega, \Theta
$$

- These two considerations are orthogonal to each other
- one can do any type of function bound with any type of complexity analysis

Complexity analysis overview

General algorithm design paradigm

- Find a way to reduce your problem to
one or more smaller problems of the
same type
- When problems are really small solve
them directly

Example
- Mergesort
- on a problem of size at least 2
- Sort the first half of the numbers
- Sort the second half of the numbers
- Merge the two sorted lists
- on a problem of size 1 do nothing

Cost of Merge

- Given two lists to merge size n and m
- Maintain pointer to head of each list
- Move smaller element to output and advance pointer

प, ${ }^{n}$ पПा m

Worst case $n+m-1$ comparisons
Best case $\min (n, m)$ comparisons

Insertion Sort

- For $\mathbf{i}=2$ to \mathbf{n} do
$\mathbf{j} \leftarrow \mathbf{i}$
while $(\mathbf{j}>1 \& X[j]>X[j-1])$ do swap $\mathbf{X}[\mathbf{j}]$ and $\mathbf{X}[\mathbf{j}-1]$
- i.e., For $\mathbf{i}=2$ to \mathbf{n} do

Insert $\mathbf{X}[\mathbf{i}]$ in the sorted list $X[1], \ldots, X[i-1]$

Recurrence relation for Insertion Sort

- Let $T_{n}(i)$ be the worst case cost of creating list that has firsti elements sorted out of n.
- We want to know $T_{n}(n)$
- The insertion of X[i] makes up to $\mathrm{i}-1$ comparisons in the worst case
- $T_{n}(\mathrm{i})=\mathrm{T}_{\mathrm{n}}(\mathrm{i}-1)+\mathrm{i}-1$ for $\mathrm{i}>1$
- $T_{n}(1)=0$ since a list of length 1 is always sorted
- Therefore $T_{n}(n)=n(n-1) / 2$

Solving recurrence relations

- e.g. $T(n)=T(n-1)+f(n)$ for $n \geq 1$
$T(0)=0$
- solution is $T(n)=\sum_{i=1}^{n} f(i)$
- Insertion sort: $\mathbf{T}_{\mathbf{n}}(\mathbf{i})=\mathbf{T}_{\mathrm{n}}(\mathbf{i}-\mathbf{1})+\mathbf{i}-\mathbf{1}$
- so $T_{n}(n)=\sum_{i=1}^{n}(i-1)=n(n-1) / 2$

Partition - two finger algorithm

- Partition(X, left,right)
choose a random element to be a pivot and pull it out of the array, say at left end
maintain two fingers starting at each end of the array
slide them towards each other until you get a pair of elements where right finger has a smaller element and left finger has a bigger one (when compared to pivot)
swap them and repeat until fingers meet put the pivot element where they meet

Partition - two finger algorithm

- Partition(X,left,right)
swap X[left], X[random(left, right)]
pivot $\leftarrow \mathbf{X}[$ left]; $L \leftarrow$ left $; \mathbf{R} \leftarrow$ right
while $\mathbf{L}<\mathbf{R}$ do
while ($\mathbf{X}[\mathbf{L}] \leq$ pivot $\& \mathbf{L} \leq$ right) do $\mathrm{L} \leftarrow \mathrm{L}+\mathbf{1}$
while ($\mathbf{X}[\mathbf{R}]>$ pivot \& $\mathbf{R} \geq$ left $)$ do $\mathbf{R} \leftarrow \mathbf{R}-1$
if $\mathbf{L}>\mathbf{R}$ then swap $\mathbf{X}[\mathbf{L}], \mathbf{X}[\mathbf{R}]$

In practice

- often choose pivot in fixed way as
- middle element for small arrays
- median of 1st, middle, and last for larger arrays
- median of 3 medians of 3 (9 elements in all) for largest arrays
- four finger algorithm is better
- also maintain two groups at each end of elements equal to the pivot
- swap them all into middle at the end of Partition
- equal elements are bad cases for two fingers
swap $\mathbf{X}[$ left $], \mathbf{X}[\mathbf{R}]$
return \mathbf{R}

Quicksort Analysis

- Partition does $\mathbf{n - 1}$ comparisons on a list of length n
- pivot is compared to each other element
- If pivot is $\mathrm{i}^{\text {th }}$ largest then two sub-problems are of size $\mathbf{i - 1}$ and $n-i$
- If pivot is always in the middle get
$\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{n}-1$ comparisons
- $\mathbf{T}(\mathbf{n})=\mathbf{n} \log _{2} \mathbf{n}$ better than Mergesort
- If pivot is always at the end get $T(n)=T(n-1)+n-1$ comparisons - $T(n)=n(n-1) / 2$ like Insertion Sort

Quicksort Analysis Average Case

- Recall
- Partition does \mathbf{n}-1 comparisons on a list of length n
- If pivot is $\mathrm{i}^{\text {th }}$ largest then two sub-problems are of size i-1 and n-i
- Pivot is equally likely to be any one of $1^{\text {st }}$ through $\mathbf{n}^{\text {th }}$ largest

$$
\mathrm{T}(\mathrm{n})=\mathrm{n}-1+\frac{1}{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{n}}(\mathrm{~T}(\mathrm{i}-1)+\mathrm{T}(\mathrm{n}-\mathrm{i}))
$$

Quicksort analysis

$T(n)=n-1+\frac{1}{n} \sum_{i=1}^{n}(T(i-1)+T(n-i))$
$=n-1+\frac{2 T(1)+2 T(2)+\ldots+2 T(n-1)}{n}$
$\therefore \mathrm{nT}(\mathrm{n})=\mathrm{n}(\mathrm{n}-1)+2 \mathrm{~T}(1)+2 \mathrm{~T}(2)+\ldots+2 \mathrm{~T}(\mathrm{n}-1)$
$(n+1) T(n+1)=(n+1) n+2 T(1)+2 T(2)+\ldots+2 T(n)$
$\therefore(n+1) T(n+1)-n T(n)=2 T(n)+2 n$
$(n+1) T(n+1)=(n+2) T(n)+2 n$
$\therefore \frac{\mathrm{T}(\mathrm{n}+1)}{\mathrm{n}+2}=\frac{\mathrm{T}(\mathrm{n})}{\mathrm{n}+1}+\frac{2 \mathrm{n}}{(\mathrm{n}+1)(\mathrm{n}+2)}$

Quicksort analysis

Let $Q(n)=\frac{T(n)}{n+1}$
$\therefore Q(\mathrm{n}+1) \leq \mathrm{Q}(\mathrm{n})+\frac{2}{\mathrm{n}+1}$
$\therefore Q(n) \leq 2\left(1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}\right)=2 H_{n} \approx 2 \ln n=1.38 \log _{2} n$
(Recallthat $\ln n=\int_{1}^{n} 1 / x d x$)
$\therefore T(n) \approx 1.38 n \log _{2} n$

"Gestalt" Analysis of Quicksort

- Look at elements that ended up in positions $\mathbf{j}<k$ of the final sorted array
- The expected \# of comparisons in Qsort
$=$ the expected \# of $\mathbf{j}<\mathbf{k}$ such that the $\mathbf{j}^{\text {th }}$ and $k^{\text {th }}$ elements were compared
$=\operatorname{sum}_{\mathrm{j}<\mathbf{k}} \operatorname{Pr}\left[\mathrm{j}^{\text {th }}\right.$ and $\mathbf{k}^{\text {th }}$ elts were compared $]$

"Gestalt" Analysis of Quicksort

- Look at elements that end up in positions $\mathbf{j}<\mathbf{k}$ of the final sorted array
- What is the chance that they were compared to each other during the course of the algorithm?
- They started off together in the same sub-problem
- They ended up in different sub-problems
- The only time they might have been compared to each is when they were split into separate subproblems

"Gestalt" Analysis of Quicksort

- The only time they might have been compared to each is when they were split into separate sub-problems
- The only way they could be split in a step is if the pivot was an element that ended up between $\mathbf{j}^{\text {th }}$ and $\mathbf{k}^{\text {th }}$ in the final sorted array
- The pivot could be $\mathbf{j}^{\text {th }}$ or $\mathbf{k}^{\text {th }}$
- Those are the only cases when they are compared
- Chances of that happening is $\mathbf{2}$ out of $(\mathbf{k}-\mathbf{j}+\mathbf{1})$ equally likely possibilities

Total cost of Quicksort

- Total expected cost

$$
\sum_{k>j} \frac{2}{k-j+1}
$$

- The contribution for each j is at most

$$
2\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots+\frac{1}{n}\right) \leq 2 \log _{e} n
$$

- Total $2 \mathbf{n} \log _{\mathrm{e}} \mathbf{n}=1.38 \mathbf{n} \log _{2} \mathbf{n}$

