
1

1

CSE 417: Algorithms and
Computational
Complexity

Intro to Algorithms & Complexity

Autumn 2002
Paul Beame

2

Algorithms & Complexity

n Now
n we know a bunch of problems are

undecidable
n lets try to avoid those and concentrate on

getting good solutions to problems that we
have a hope of solving
n Ex: sorting names
n Ex: checking for primality

n Simply solving them isn’t enough,
efficiency is important too

3

Reading assignment

n Read Chapter 1 of The ALGORITHM
Design Manual

4

Algorithms: an example problem

n Printed circuit-board company has a
robot arm that solders components to
the board

n Time to do it depends on
n total distance the arm must move from

initial rest position around the board and
back to the initial positions

n For each board design, must figure out
good order to do the soldering

5

Printed Circuit Board

6

Printed Circuit Board

2

7

A well-defined Problem

n Input: Given a set S of n points in the plane

n Output: The shortest cycle tour that visits
each point in the set S.

n How might you solve it?

8

Nearest Neighbor Heuristic

n Start at some point p0

n Walk first to its nearest neighbor p1

n Repeatedly walk to the nearest
unvisited neighbor until all points have
been visited

n Then walk back to p0

9

Nearest Neighbor Heuristic

p0

p1

p6

10

An input where it works badly

p0

11 24 816

11

An input where it works badly

p0

11 24 816

11 24 816

12

Revised idea - Closest Pairs first

n Repeatedly pick the closest pair of
points to join so that the result can still
be part of a single loop in the end
n can pick endpoints of line segments

already created

n How does this work on our bad
example?

3

13

Another bad example

1

1.5 1.5

14

Another bad example

1

1.5 1.5

1+√10 vs 3

15

Something that works

For each of the n! orderings of the points
check the length of the cycle you get
n Keep the best one

16

Efficiency

n The two incorrect algorithms were greedy
n they made choices and never reconsidered their

choices

n often it does not work
n when it does the algorithms are typically

efficient

n Our correct algorithm is incredibly slow
n 20! is so large that counting to one billion in a

second it would still take 2.4 billion seconds
n (around 70 years!)

17

Measuring efficiency:
The RAM model

n RAM = Random Access Machine

n Time ≈ # of instructions executed in an
ideal assembly language
n each simple operation (+,*,-,=,if,call) takes

one time step
n each memory access takes one time step

18

We left out things but...

n Things we’ve dropped
n memory hierarchy

n disk, caches, registers have many orders of
magnitude differences in access time

n not all instructions take the same time in practice

n However,
n the RAM model is useful for designing algorithms

and measuring their efficiency
n one can usually tune implementations so that the

hierarchy etc. is not a huge factor

4

19

Complexity analysis

n Problem size n
n Worst-case complexity: max # steps

algorithm takes on any input of size n
n Best-case complexity:min # steps

algorithm takes on any input of size n
n Average -case complexity: avg # steps

algorithm takes on inputs of size n

20

Complexity

n The complexity of an algorithm associates a
number T(n), the best/worst/average-case
time the algorithm takes, with each problem
size n.

n Mathematically,

n T: N+ → R+

n that is T is a function that maps positive
integers giving problem size to positive real
numbers giving number of steps.

21

Complexity

Problem size

Ti
m

e

T(n)

22

Why Worst-Case Analysis?

n Appropriate for time-critical applications, e.g.
avionics

n Unlike Average-Case, no debate about what
the right definition is

n Analysis often easier

n Result is often representative of "typical"
problem instances

n Of course there are exceptions…

23

O-notation etc

n Given two functions f and g:N→R
n f(n) is O(g(n)) iff there is a constant c>0 so

that f(n) is eventually
always ≤ c g(n)

n f(n) is Ω(g(n)) iff there is a constant c>0 so
that f(n) is eventually
always≥ c g(n)

n f(n) is Θ(g(n)) iff there is are constants c1 and c2>0
so that eventually always
c1g(n) ≤ f(n) ≤ c2g(n)

24

Complexity

Problem size

Ti
m

e

T(n)

n log2n

2n log2n

5

25

Examples

n 10n2-16n+100 is O(n2) also O(n3)
n 10n2-16n+100 ≤ 11n2 for all n ≥ 10

n 10n2-16n+100 is Ω (n2) also Ω (n)
n 10n2-16n+100 ≥ 9n2 for all n ≥16

n Therefore also 10n2-16n+100 is Θ(n2)

n 10n2-16n+100 is not O(n) also not Ω(n3)

n Note: I don’t use notation f(n)=O(g(n))

26

Working with O-Ω-Θ notation

n Claim: For any a, b>1 logan is Θ(logbn)
n logan=logab × logbn so letting c=logab we get

that clogbn ≤ logan ≤ clogbn

n Claim: For any a and b>0, (n+a)b is Θ(nb)
n (n+a)b ≤ (2n)b for n ≥ |a|

= 2bnb = cnb for c=2b so (n+a)b is O(nb)

n (n+a)b ≥ (n/2)b for n ≥ 2|a|
=2-bnb =c’n for c’=2-b so (n+a)b is Ω(nb)

