CSE 417: Algorithms and
Computational
Complexity

Intro to Algorithms & Complexity

Autumn 2002
Paul Beame

Algorithms & Complexity

= Now

= we know a bunch of problems are
undecidable

= lets try to avoid those and concentrate on
getting good solutions to problems that we
have a hope of solving

= Ex: sorting names
= Ex: checking for primality

= Simply solving them isn’t enough,
efficiency is important too

Reading assignment
= Read Chapter 1 of The ALGORITHM
Design Manual

Algorithms: an example problem
= Printed circuit-board company has a
robot arm that solders components to
the board

= Time to do it depends on

= total distance the arm must move from
initial rest position around the board and
back to the initial positions
= For each board design, must figure out
good order to do the soldering

4 Printed Circuit Board 4 Printed Circuit Board
- .

A Awell-defined Problem
= Input: Given a set S of n points in the plane

= Output: The shortest cycle tour that visits
each point in the set S.

= How might you solve it?

= Start at some pointp,
= Walk first to its nearest neighbor p,

= Repeatedly walk to the nearest
unvisited neighbor until all points have
been visited

= Then walk back to p,

° oo ° [
16 4 11 2 8
. eooe . .

= Repeatedly pick the closest pair of
points to join so that the result can still
be part of a single loop in the end

= can pick endpoints of line segments
already created

= How does this work on our bad
example?

=1

1.5 1.5

1+¢10 vs 3

N

For each of the n! orderings of the points
check the length of the cycle you get
= Keep the best one

= The two incorrect algorithms were greedy

= they made choices and never reconsidered their
choices

= often it does not work
= when it does the algorithms are typically
efficient
= Our correct algorithm is incredibly slow
= 20! is so large that counting to one billion in a
second it would still take 2.4 billion seconds
= (around 70 years!)

Measuring efficiency:

= RAM = Random Access Machine

= Time » # of instructions executed in an
ideal assembly language
= each simple operation (+,*,-,=,if,call) takes
one time step
= each memory access takes one time step

= Things we've dropped
= memory hierarchy

= disk, caches, registers have many orders of
magnitude differences in access time

= not all instructions take the same time in practice
= However,

= the RAM model is useful for designing algorithms
and measuring their efficiency

= one can usually tune implementations so that the
hierarchy etc. is not a huge factor

4 Complexity analysis
"

= Problemsize n
= Worst-case complexity: max # steps
algorithm takes on any input of size n
= Best-case complexity: min # steps
algorithm takes on any input of size n

= Average -case complexity: avg # steps
algorithm takes on inputs of size n

Complexity
= The complexity of an algorithm associates a

number T(n), the best/worst/average-case
time the algorithm takes, with each problem
size n.

= Mathematically,
« T:N*® R*
= that is T is a function that maps positive

integers giving problem size to positive real
numbers giving number of steps.

3

Why Worst-Case Analysis?

= Appropriate for time-critical applications, e.g.
avionics

Unlike Average-Case, no debate about what
the right definition is

= Analysis often easier

= Result is often representative of "typical”
problem instances

Of course there are exceptions...

4 Complexity
T(n)
(4]
£
'—
Problem size
4 O-notation etc

= Given two functionsf and g:N® R

= f(n) is O(g(n)) iff there is a constant c>0 so
that f(n)is eventually
always £ ¢ g(n)

= f(n) is Wg(n)) iffthere is a constant c>0 so
that f(n) is eventually
always® cg(n)

= f(n) is Q(g(n)) iffthere is are constants c, and c,>0
sothat eventually always
c,g(n) £ f(n) £ c,9(n)

o

Time

Complexity

Problem size

Examples

10n2-16n+100 is O(n2) also O(n?3)
= 10n%-16n+100 £ 11n?for all n 3 10
10n2-16n+100 isW(n?) also W(n)
= 10n%16n+100 3 9n? for all n 316

= Therefore also 10n2-16n+100 is Q(n?)

10n2-16n+100 is not O(n) also not W(n3)

Note: | don't use notation f(n)=0(g(n))

Working with O-W-Q notation
= Claim: For anya, b>1 log,nis Q(log,n)

= log,n=log,b x log,n so letting c=log b we get
that clogyn £log,n £ clogy,n

= Claim: For anyaand b>0, (n+a)®is Q(n®)
= (n+a)° £(2n)® forn 3 |a|
=2°nb = cnPfor c=2° so (n+a)® is O(n®)

= (n+a)° 3 (n/2)Pfor n 3 2|
=2"nb =¢'n for ¢ =2 so (n+a)® is Wn®)

