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Algorithms & Complexity

n Now 
n we know a bunch of problems are 

undecidable 
n lets try to avoid those and concentrate on 

getting good solutions to problems that we 
have a hope of solving 
n Ex: sorting names
n Ex: checking for primality

n Simply solving them isn’t enough, 
efficiency is important too
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Reading assignment

n Read Chapter 1 of  The ALGORITHM 
Design Manual
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Algorithms: an example problem

n Printed circuit-board company has a 
robot arm that solders components to 
the board

n Time to do it depends on
n total distance the arm must move from 

initial rest position around the board and 
back to the initial positions

n For each board design, must figure out 
good order to do the soldering
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Printed Circuit Board
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Printed Circuit Board
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A well-defined Problem

n Input: Given a set S of n points in the plane

n Output: The shortest cycle tour that visits 
each point in the set S.

n How might you solve it?
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Nearest Neighbor Heuristic

n Start at some point p0

n Walk first to its nearest neighbor p1

n Repeatedly walk to the nearest 
unvisited neighbor until all points have 
been visited

n Then walk back to p0
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Nearest Neighbor Heuristic

p0

p1

p6
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An input where it works badly

p0

11 24 816
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An input where it works badly

p0

11 24 816

11 24 816
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Revised idea - Closest Pairs first

n Repeatedly pick the closest pair of 
points to join so that the result can still 
be part of a single loop in the end
n can pick endpoints of line segments 

already created

n How does this work on our bad 
example?
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Another bad example

1

1.5 1.5
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Another bad example

1

1.5 1.5

1+√10  vs 3
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Something that works

For each of the n! orderings of the points 
check the length of the cycle you get
n Keep the best one
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Efficiency

n The two incorrect algorithms were greedy
n they made choices and never reconsidered their 

choices

n often it does not work
n when it does the algorithms are typically 

efficient

n Our correct algorithm is incredibly slow
n 20! is so large that counting to one billion in a 

second it would still take 2.4 billion seconds
n (around 70 years!)
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Measuring efficiency:
The RAM model

n RAM = Random Access Machine

n Time ≈ # of instructions executed in an 
ideal assembly language
n each simple operation (+,*,-,=,if,call) takes 

one time step
n each memory access takes one time step
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We left out things but...

n Things we’ve dropped
n memory hierarchy

n disk, caches, registers have many orders of 
magnitude differences in access time

n not all instructions take the same time in practice

n However, 
n the RAM model is useful for designing algorithms 

and measuring their efficiency
n one can usually tune implementations so that the 

hierarchy etc. is not a huge factor
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Complexity analysis

n Problem size n
n Worst-case complexity: max # steps 

algorithm takes on any input of size n
n Best-case complexity:min # steps 

algorithm takes on any input of size n
n Average -case complexity: avg # steps 

algorithm takes on inputs of size n
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Complexity

n The complexity of an algorithm associates a 
number T(n), the best/worst/average-case 
time the algorithm takes, with each problem 
size n.

n Mathematically,

n T: N+ → R+

n that is T is a function that maps positive 
integers giving problem size to positive real 
numbers giving number of steps.
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Complexity

Problem size 

Ti
m

e

T(n)
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Why Worst-Case Analysis?

n Appropriate for time-critical applications, e.g. 
avionics

n Unlike Average-Case, no debate about what 
the right definition is

n Analysis often easier

n Result is often representative of "typical" 
problem instances

n Of course there are exceptions…
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O-notation etc

n Given two functions f and g:N→R
n f(n) is O(g(n)) iff there is a constant c>0 so        

that f(n) is eventually  
always ≤ c g(n)

n f(n) is Ω(g(n)) iff there is a constant c>0 so        
that f(n) is eventually  
always≥ c g(n)

n f(n) is Θ(g(n)) iff there is are constants c1 and c2>0
so that eventually always
c1g(n) ≤ f(n) ≤ c2g(n)
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Complexity

Problem size 
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n log2n

2n log2n
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Examples

n 10n2-16n+100 is O(n2) also O(n3)
n 10n2-16n+100 ≤ 11n2 for all n ≥ 10

n 10n2-16n+100 is Ω (n2) also Ω (n)
n 10n2-16n+100 ≥ 9n2 for all n ≥16

n Therefore also 10n2-16n+100 is Θ(n2)

n 10n2-16n+100 is not O(n) also not Ω(n3)

n Note: I don’t use notation f(n)=O(g(n))
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Working with O-Ω-Θ notation

n Claim: For any a, b>1 logan is Θ(logbn)
n logan=logab × logbn so letting c=logab we get 

that  clogbn ≤ logan ≤ clogbn

n Claim: For any a and b>0,  (n+a)b is Θ(nb)
n (n+a)b ≤ (2n)b for n ≥ |a|

= 2bnb = cnb for c=2b so (n+a)b is O(nb)

n (n+a)b ≥ (n/2)b for n ≥ 2|a|
=2-bnb =c’n for c’=2-b so (n+a)b is Ω(nb)


