CSE 417: Algorithms and
Computational
Complexity

Dealing with NP-completeness

Autumn 2002
Paul Beame

4

What to do if the problem you want

4 to solve is NP-hard

= You might have phrased your problem
too generally

= €.9., in practice, the graphs that actually
arise are far from arbitrary

= maybe they have some special
characteristic that allows you to solve
the problem in your special case
= for example the Clique problem is easy on “interval
graphs”.
= search the literature to see if special
cases already solved

What to do if the problem you want

| ‘ to solve is NP-hard

= Try to find an approximation algorithm
= Maybe you can't get the size of the best Vertex
Cover but you can find one within a factor of 2 of
the best
= Given graph G=(V,E), start with an empty cover
= While there are still edges in E left

= Choose an edge e={u,v} in E and add both u and v
to the cover

= Remove all edges from E that touch either u or v.
« Edges chosen don't share any vertices so
optimal cover size must be at least # of edges
chosen

|

What to do if the problem you want

to solve is NP-hard

= Try to find an approximation algorithm

= Recent research has classified problems based on what
kinds of approximations are possible if P* NP

= Best: (1+e) factor for any e>0.
= packing and some scheduling problems, TSP in plane
= Some fixed constant factor > 1, e.g. 2, 3/2, 100
= Vertex Cover, TSP in space, other scheduling problems
= Q(log n) factor
= Set Cover, Graph Partitioning problems
= Worst: W(n'-¢) factor for any e>0
= Clique, Independent-Set, Coloring

What to do if the problem you want

| to solve is NP-hard

= Try an algorithm that is provably fast “on
average”.

= To even try this one needs a model of what a
typical instance is.

= Typically, people consider “random graphs”
= e.g. all graphs with a given # of edges are
equally likely
= Problems:
« real data doesn't look like the random graphs
=« distributions of real data aren’t analyzable

What to do if the problem you want
to solve is NP-hard

= Try to search the space of possible hints in a more
efficient way and hope it is quick enough
= e.g. back-tracking search
= For Satisfiability there are 2" possible truth
assignments
= If we set the truth values one-by-one we might
be able to figure out whole parts of the space to
avoid,
= e.g. After setting x,~ 1, x,m 0 we don't even need to
set X, or X, to know that it won't satisfy
(Dx; Ux,) U (B, Uxs) U(x, UDxz) U (x; UDx,)
= For Satisfiability this seems to run in times like
2120 on typical hard instances.
= Related technique: branch-and-bound




4

What to do if the problem you want
to solve is NP-hard

= Use heuristic algorithms and hope they
give good answers
= No guarantees of quality
= Many different types of heuristic algorithms

= Many different options, especially for
optimization problems, such as TSP,
where we want the best solution.

= We'll mention several on following slides

Heuristic algorithms for

4 NP-hard problems

= local search for optimization problems
= need a notion of two solutions being
neighbors
= Start at an arbitrary solution S
= While there is a neighbor T of S that is
better than S
«S-T
= Usually fast but often gets stuck in a local
optimum and misses the global optimum

= With some notions of neighbor can take a long
time in the worst case

Solution S

Two solutions are neighbors
iff there is a pair of edges you can
swap to transform one to the other

Solution T

Heuristic algorithms for

| NP-hard problems

= randomized local search

= start local search several times from random starting points and
take the best answer found from each point
= more expensive than plain local search but usually
much better answers
= simulated annealing
= like local search but at each step sometimes move to a worse
neighbor with some probability
= probability of going to a worse neighbor is set to decrease
with time as, presumably, solution is closer to optimal
= helps avoid getting stuck in a local optimum but often slow
to converge (much more expensive than randomized local
search)
= analogy with slow cooling to get to lowest energy state in a
crystal (or in forging a metal)

10

Heuristic algorithms for

= genetic algorithms
view each solution as a string (analogy with DNA)
maintain a population of good solutions

allow random mutations of single characters of individual
solutions

combine two solutions by taking part of one and part of
another (analogy with crossover in sexual reproduction)
get rid of solutions that have the worst values and make
multiple copies of solutions that have the best values
(analogy with natural selection -- survival of the fittest).

little evidence that they work well and they are usually
very slow

= as much religion as science

Heuristic algorithms

= artificial neural networks
= based on very elementary model of human neurons
= Set up acircuit of artificial neurons
= each artificial neuron is an analog circuit gate whose
computation depends on a set of connection strengths
Train the circuit
= Adjust the connection strengths of the neurons by giving
many positive & negative training examples and seeing if
it behaves correctly
The network is now ready to use

useful for ill-defined classification problems such as optical
character recognition but not typical cut & dried problems

12




4‘ Other fun directions

= DNA computing
= Each possible hint for an NP problem is represented as
a string of DNA
= fill a test tube with all possible hints
View verification algorithm as a series of tests
= e.g. checking each clause is satisfied in case of
Satisfiability
For each test in turn
= use lab operations to filter out all DNA strings that
fail the test (works in parallel on all strings; uses PCR)
If any string remains the answer is a YES.

= Relies on fact that Avogadro’s # 6 x 102 is large to get enough
strings to fit in a test-tube.
= Error-prone & so far only problem sizes less than 15!

Other fun directions

= Quantum computing

= Use physical processes at the quantum level to implement
weird kinds of circuit gates

= unitary transformations

Quantum objects can be in a superposition of many pure
states at once

= can have n objects together in a superposition of 2" states

Each quantum circuit gate operates on the whole
superposition of states at once

= inherent parallelism

= Need totally new kinds of algorithms to work well. Theoretically
able to factor efficiently but huge practical problems: errors,
decoherence.

14




