

Problems we already know are NP-complete

- Satisfiability
- Independent-Set
- Clique
- Vertex-Cover
- There are 1000's of practical problems that are NP-complete, e.g. scheduling, optimal VLSI layout etc.

A particularly useful problem for proving NP-completeness

- 3-SAT: Given a CNF formula F having precisely 3 variables per clause (i.e., in 3-CNF), is F satisfiable?
- Claim: 3-SAT is NP-complete
- Proof:
- 3-SAT \in NP
- Hint is a satisfying assignment
- Just like Satisfiability it is polynomial-time to check the hint

Satisfiability $\leq{ }^{\mathrm{p}} 3$-SAT

- Reduction:
- map CNF formula F to another CNF formula \mathbf{G} that has precisely 3 variables per clause.
- G has one or more clauses for each clause of F
- G will have extra variables that don't appear in F
- for each clause C of F there will be a different set of variables that are used only in the clauses of \mathbf{G} that correspond to \mathbf{C}

Satisfiability $\leq{ }^{\mathrm{p}} 3$-SAT

- Goal:
- An assignment a to the original variables makes clause \mathbf{C} true in \mathbf{F} iff
- there is an assignment to the extra variables that together with the assignment a will make all new clauses corresponding to \mathbf{C} true.
- Define the reduction clause-by-clause
- We'll use variable names \mathbf{z}_{i} to denote the extra variables related to a single clause \mathbf{C} to simplify notation
- in reality, two different original clauses will not share \mathbf{z}_{j}

Satisfiability $\leq^{\mathrm{p}} 3$-SAT

- If C has $k \geq 4$ variables: e.g. $C=\left(x_{1} \vee \ldots \vee x_{k}\right)$
- Use $k-3$ new variables z_{2}, \ldots, z_{k-2} and put $k-2$ new clauses in G
$\left(\mathbf{x}_{1} \vee \mathbf{x}_{2} \vee \mathbf{z}_{2}\right) \wedge\left(\neg \mathbf{z}_{2} \vee \mathbf{x}_{3} \vee \mathbf{z}_{3}\right) \wedge\left(\neg \mathbf{z}_{3} \vee \mathbf{x}_{\mathbf{4}} \vee \mathbf{z}_{4}\right) \wedge .$. $\wedge\left(\neg \mathbf{z}_{\mathrm{k}-3} \vee \mathbf{x}_{\mathrm{k}-2} \vee \mathbf{z}_{\mathrm{k}-2}\right) \wedge\left(\neg \mathbf{z}_{\mathrm{k}-2} \vee \mathbf{x}_{\mathrm{k}-1} \vee \mathbf{x}_{\mathrm{k}}\right)$
- If original \mathbf{C} is true under assignment a then some \mathbf{x}_{i} is true for $\mathbf{i} \leq \mathbf{k}$. By setting z_{i} true for all $\mathrm{j}<\mathrm{i}$ and false for all $\mathbf{j} \geq \mathbf{i}$, we can extend a to make all new clauses true.
- If new clauses are all true under some assignment b then some $\mathbf{x}_{\mathbf{i}}$ must be true for $\mathbf{i} \leq \mathbf{k}$ because $\mathbf{z}_{2} \wedge\left(\neg \mathbf{z}_{2} \vee \mathbf{z}_{3}\right) \wedge \ldots \wedge\left(\neg \mathbf{z}_{\mathrm{k}-3} \vee \mathbf{z}_{\mathrm{k}-2}\right) \wedge \neg \mathbf{z}_{\mathrm{k}-2}$ is not satisfiable

Graph Colorability

- Defn: Given a graph $G=(V, E)$, and an integer k, a k-coloring of G is
- an assignment of up to k different colors to the vertices of G so that the endpoints of each edge have different colors.
- 3-Color: Given a graph $G=(\mathrm{V}, \mathrm{E})$, does G have a 3-coloring?
- Claim: 3-Color is NP-complete
- Proof: 3-Color is in NP:
- Hint is an assignment of red,green,blue to the vertices of G
- Easy to check that each edge is colored correctly

Is NP as bad as it gets?

- NO! NP-complete problems are frequently encountered, but there's worse:
- Some problems provably require exponential time.
- Ex: Does \mathbf{P} halt on \mathbf{x} in $\mathbf{2}^{|x|}$ steps?

