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ACMS Seminar, Fridays 3:30-4:30
Smith 105

n Algorithms Theme
n Today: 3:30-4:30  Smith 105

n Primes is in P!
n Hot-off-the-newswire talk by Neal Koblitz

n new (this August) algorithm by Agrawal, 
Kayal, and Saxena

n First  deterministic polynomial-time 
algorithm for testing whether a number 
is prime!
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Course Staff

n Instructor: Paul Beame beame@cs
n Office:Sieg 416    Hours:MW 1:20-2:00
n Phone:543-5114               F    2:00-3:00

n TAs: 
n Deepak Verma deepak@cs

n Office: Sieg 226A  Hours: Tu 12:00-1:00

n Michael Nelson nelsonmj@cs
n Office: Sieg 226A  Hours: Th 3:30-4:30
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CSE 417:  Algorithms and 
Computational 
Complexity

Computability: Turing Machines
& The Halting Problem

Autumn 2002
Paul Beame
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Computing & Mathematics

Computers as we know them grew out of 
a desire to avoid bugs in mathematical 
reasoning
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A Brief History of Reasoning

n Ancient Greece
n Deductive logic

n Euclid’s Elements

n Infinite things are a problem
n Zeno’s paradox
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A Brief History of Reasoning

n 1670’s-1800’s  Calculus & infinite series
n Suddenly infinite stuff really matters
n Reasoning about infinite still a problem

n Tendency for buggy or hazy proofs

n Mid-late 1800’s
n Formal mathematical logic

n Boole Boolean Algebra
n Theory of infinite sets     

n Cantor
“There are more real #’s than rational #’s”
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A Brief History of Reasoning

n 1900
n Hilbert's famous speech outlines goal: 

mechanize all of mathematics               
23 problems

n 1930’s
n Gödel, Turing show that Hilbert’s 

program is impossible.                                    
Gödel’s Incompleteness Theorem 
Undecidability of the Halting Problem

Both use ideas from Cantor’s proof about reals & rationals
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A Brief History of Reasoning

n 1930’s 
n How can we formalize what  

algorithms are possible?
n Turing machines (Turing, Post)

n basis of modern computers

n Lambda Calculus (Church)
n basis for functional programming

n µ-recursive functions (Kleene)
n alternative functional programming basis

All 
are

equivalent!
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Turing Machines

Church-Turing Thesis
Any reasonable model of computation that 

includes all possible algorithms is 
equivalent in power to a Turing machine

n Evidence
n Huge numbers of equivalent models to 

TM’s based on radically different ideas
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What is a Turing Machine?

n Formal definition
n Turing & Post excerpts give descriptions

n Turing’s justification, based on intuition, that this is really 
the right notion.

n Sipser handout gives full details

n Key properties
n Manipulates finite sequences of symbols

n Use a finite set of possible instructions
n Each does only a finite amount of work per step

n No a priori bound on resource usage
n Can always get more resources if needed
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Turing Machine = Ideal C Program

n Ideal C/C++/Java programs
n Just like the C/C++/Java you’re used to 

programming with, except you never run 
out of memory
n malloc never fails
n constructor methods always succeed

n Equivalent to Turing machines except a 
lot easier to program !
n Exact TM definition doesn’t matter to us so 

we’ll just think of these programs as TM’s.

12

Turing machines as data

n Original Turing machine definition
n A different machine P for each task
n Each machine P is defined by a finite set of 

possible operations on finite set of symbols
n P has a finite description as a sequence of 

symbols, its code

n Notation: 
n We’ll write <P> for the code of program P and

<P,x> for the pair of the program code and an 
input x

n i.e. <P> is the program text as a sequence of 
ASCII symbols and P is what actually executes
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A Universal Turing Machine

n A Turing machine interpreter  U
n On input <P> and its input x, U outputs the same 

thing as P does on input x
n At each step it decodes which operation P would 

have performed and simulates it.

n One Turing machine is enough!
n Basis for modern stored-program computer

n Von Neuman studied Turing’s UTM design

P
input

x
output
P(x) U

x output
P(x)

<P>
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Halting Problem

n Given: the code of a program P and an 
input x for P, i.e. given <P,x>

n Output: 1 if P halts on input x
0 if P does not halt on input x

n Theorem (Turing): There is no program 
that solves the halting problem 

“The halting problem is undecidable”
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Undecidability of the Halting Problem

n Suppose that there is a program H that 
computes the answer to the Halting 
Problem

n We’ll build a table with 
n all the possible programs down one side
n all the possible inputs along the other side 

n Then we’ll use the supposed program H to 
build a new program that can’t possibly be in 
the table!
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ε 0  1  00  01  10  11  000  001  010  011 ....
input x

ε
0
1
00
01
10
11
000
001

.

.

pr
og

ra
m

 c
od

e 
<P

>

0   1  1  0    1     1    1     0      0      0      1  ....
1   1  0  1    0     1    1     0      1      1      1  ....
1   0  1  0    0     0    0     0      0      0      1  ....
0   1  1  0    1     0    1     1      0      1      0  ....
0   1  1  1    1     1    1     0      0      0      1  ....
1   1  0  0    0     1    1     0      1      1      1  ....
1   0  1  1    0     0    0     0      0      0      1  ....
0   1  1  1    1     0    1     1      0      1      0  ....
.     .   .  .   .    .   .   .   .    .    .       .  
.     .   .  .   .    .   .   .   .    .    .       .  

(<P>,x) entry is 1 if program P halts on input x
and 0 if it runs forever
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Diagonal construction

n Consider a row corresponding to some 
program code <P>
n the infinite sequence of 0’s and 1’s in that  row of 

the table is like a fingerprint of P

n Suppose a program for H exists
n Then it could be used to figure out the value of any 

entry in the table
n We’ll use it to create a new program D that has a 

different fingerprint from every row in the table
n But that’s impossible since there is a row for every 

program !    Contradiction
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ε 0  1  00  01  10  11  000  001  010  011 ....
input x

ε
0
1
00
01
10
11
000
001

.

.

pr
og

ra
m

 c
od

e 
<P

>

0   1  1  0    1     1    1     0      0      0      1  ....
1   1  0  1    0     1    1     0      1      1      1  ....
1   0  1  0    0     0    0     0      0      0      1  ....
0   1  1  0    1     0    1     1      0      1      0  ....
0   1  1  1    1     1    1     0      0      0      1  ....
1   1  0  0    0     1    1     0      1      1      1  ....
1   0  1  1    0     0    0     0      0      0      1  ....
0   1  1  1    1     0    1     1      0      1      0  ....
.     .   .  .   .    .   .   .   .    .    .       .  
.     .   .  .   .    .   .   .   .    .    .       .  

(<P>,x) entry is 1 if program P halts on input x
and 0 if it runs forever
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ε 0  1  00  01  10  11  000  001  010  011 ....
input x

ε
0
1
00
01
10
11
000
001

.

.

pr
og

ra
m

 c
od

e 
<P

>

0 1  1  0    1     1    1     0      0      0      1  ....
1   1 0  1    0     1    1     0      1      1      1  ....
1   0  1 0    0     0    0     0      0      0      1  ....
0   1  1  0 1     0    1     1      0      1      0  ....
0   1  1  1    1 1    1     0      0      0      1  ....
1   1  0  0    0     1 1     0      1      1      1  ....
1   0  1  1    0     0    0 0      0      0      1  ....
0   1  1  1    1     0    1     1 0      1      0  ....
.     .   .  .   .    .   .   .   .    .    .       .  
.     .   .  .   .    .   .   .   .    .    .       .  

(<P>,x) entry is 1 if program P halts on input x
and 0 if it runs forever
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ε 0  1  00  01  10  11  000  001  010  011 ....
input

ε
0
1
00
01
10
11
000
001

.

.

pr
og

ra
m

 c
od

e 
<P

>

1 1  1  0    1     1    1     0      0      0      1  ....
1   0 0  1    0     1    1     0      1      1      1  ....
1   0  0 0    0     0    0     0      0      0      1  ....
0   1  1  1 1     0    1     1      0      1      0  ....
0   1  1  1    0 1    1     0      0      0      1  ....
1   1  0  0    0     0 1     0      1      1      1  ....
1   0  1  1    0     0    1 0      0      0      1  ....
0   1  1  1    1     0    1     0 0      1      0  ....
.     .   .  .   .    .   .   .   .    .    .       .  
.     .   .  .   .    .   .   .   .    .    .       .  

Want to create a new program whose halting
properties are given by the flipped diagonal

Flipped diagonal
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Code for D given subroutine for H

n Function D(x):
n if H(x,x)=1 then

n while (true); /* loop forever */
n else

n no-op; /* do nothing and halt */
n endif

n D’s fingerprint is different from every 
row of the table
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That’s it!

n We proved that there is no computer 
program that can solve the Halting 
Problem.

n This tells us that there is no compiler 
that can check our programs and 
guarantee to find any infinite loops they 
might have
n The full story is even worse
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Using the undecidability of the 
halting problem

n We have one problem that we know is 
impossible to solve
n Halting problem

n Showing this took serious effort
n We’d like to use this fact to derive that 

other problems are impossible to solve
n don’t want to go back to square one to do it
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Another undecidable problem

n The “always halts” problem
n Given: <M>, the code of a program M
n Output: 1 if M halts on every input 

0 if not.

n Claim: the “always halts” problem is 
undecidable

n Proof idea:
n Show we could solve the Halting Problem if we 

had a solution for the “always halts” problem. 
n No program solving for Halting Problem exists     

⇒ no program solving the “always halts” problem 
exists 
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What we would like

n To solve the Halting Problem need to handle
inputs of the form <P,x>

n Our program will create a new program code 
<M> so that
n If P halts on input x

n then M always halts
n If P runs forever on input x

n then M runs forever on at least one input

n In fact, the <M> we create will act the same 
on all inputs
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Creating <M> from <P,x>

n Given <P,x> modify code of P to:
n Replace all input statements of P that read 

input x, by assignment statements that 
‘hard-code’ x in P

n This creates a new program text <M>

n It would be easy to write a program T
that changes <P,x> to <M>
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The transformation

int main(){
…
scanf(“%d”,&u);
…
scanf(“%d”,&v);
…
}

123 712

int main(){
…
u = 123;
…
v = 712;
…
}

<P,x> <M>
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Program to solve Halting Problem if 
“always halts” were decidable

n Suppose “always halts” were solvable 
by program A

n On input <P,x>
n execute the program T to transform <P,x> 

into <M> as on last slide
n call A with <M> (the output of T) as its 

input and use A’s output as the answer.
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Another  undecidable problem

n The “yes” problem
n Given: <M>, the code of a program M
n Output: 1 if M outputs “yes” on every input 

0 if not.

n Claim: the “yes” problem is undecidable
n Proof idea:

n Show we could solve the Halting Problem if we 
had a solution for the “yes” problem. 

n No program solving for Halting Problem exists     
⇒ no program solving the “yes ” problem exists 
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What we would like

n To solve the Halting Problem need to be 
able to handle inputs of the form <P,x>

n We’ll create a new program code <M> 
so that
n If P halts on input x

n then M always outputs “yes”
n If P runs forever on input x

n then M does something else on at least 
one input.
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Creating <M> from <P,x>

n Given <P,x> modify code of P to:
n Remove all output statements from P
n Replace all input statements of P that read 

input x, by assignment statements that 
hard-code x in P

n Add a new last statement that prints “yes”
n This creates a new program text <M>

n It would be easy to write a program T
that changes <P,x> to <M>
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Program to solve Halting Problem if 
the “yes” problem were decidable

n Suppose the “yes” problem were 
solvable by program Y

n On input <P,x>
n execute the code to transform <P,x> into

<M> as on last slide
n call Y with <M> (the output of T) as its input 

and use Y’s output as the answer.
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Equivalent program problem

n Given: the codes of two programs, <P>
and <Q>

n Output: 1 if P produces the same output   
as Q does on every input

0 otherwise

Exercise: Show that the equivalent             
program problem is undecidable.
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A general phenomenon:               
Can’t tell a book by its cover

n Suppose you have a problem C that asks, 
given program code <P>, to determine some 
property of the input-output behavior of P, 
answering 1 if P has the property and 0 if P
doesn’t have the property.

n Rice’s Theorem: If C’s answer isn’t always 
the same then there is no program deciding C
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Even harder problems

n Recall that with the halting problem, we could 
always get at least one of the two answers 
correct
n if it halted we could always answer 1 (and this 

would cover precisely all 1’s we need to do) but 
we can’t be sure about answering 0

n There are natural problems where you can’t 
even do that!
n The equivalent program problem is an example of 

this kind of even harder problem.
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Quick lessons

n Don’t rely on the idea of improved 
compilers and programming languages 
to eliminate major programming errors
n truly safe languages can’t possibly do 

general computation
n Document your code!!!!

n there is no way you can expect someone 
else to figure out what your program does 
with just your code ....since....in general it 
is provably impossible to do this!


