ACMS Seminar, Fridays 3:30-4:30 Smith 105

- Algorithms Theme
- Today: 3:30-4:30 Smith 105
- Primes is in P!
- Hot-off-the-newswire talk by Neal Koblitz
- new (this August) algorithm by Agrawal, Kayal, and Saxena
- First deterministic polynomial-time algorithm for testing whether a number is prime!

Course Staff

- Instructor: Paul Beame beame@cs
- Office: Sieg 416 Hours:MW 1:20-2:00
. Phone:543-5114 F 2:00-3:00
- TAs:
- Deepak Verma deepak@cs
- Office: Sieg 226A Hours: Tu 12:00-1:00
- Michael Nelson nelsonmj@cs
- Office: Sieg 226A Hours: Th 3:30-4:30

Computing \& Mathematics

Computers as we know them grew out of a desire to avoid bugs in mathematical reasoning

A Brief History of Reasoning

- Ancient Greece

A Brief History of Reasoning

- Deductive logic
- Euclid's Elements
- Infinite things are a problem
- Zeno's paradox
- 1670's-1800's Calculus \& infinite series
- Suddenly infinite stuff really matters
- Reasoning about infinite still a problem
- Tendency for buggy or hazy proofs
- Mid-late 1800's
- Formal mathematical logic
- Boole Boolean Algebra
- Theory of infinite sets
- Cantor
"There are more real \#'s than rational \#'s"

Turing machines as data

- Original Turing machine definition
- A different machine P for each task
- Each machine P is defined by a finite set of possible operations on finite set of symbols - P has a finite description as a sequence of symbols, its code
- Notation:
- We'll write $\langle\mathbf{P}\rangle$ for the code of program \mathbf{P} and $<\mathbf{P}, \mathbf{x}>$ for the pair of the program code and an input x
- i.e. $<\mathrm{P}>$ is the program text as a sequence of ASCII symbols and \mathbf{P} is what actually executes

A Universal Turing Machine

- A Turing machine interpreter U

- On input $\langle\mathbf{P}>$ and its input \mathbf{x}, \mathbf{U} outputs the same thing as \mathbf{P} does on input \mathbf{x}
- At each step it decodes which operation P would have performed and simulates it.
- One Turing machine is enough!
- Basis for modern stored-program computer - Von Neuman studied Turing's UTM design

- Suppose that there is a program H that computes the answer to the Halting Problem
- We'll build a table with
- all the possible programs down one side
- all the possible inputs along the other side
- Then we'll use the supposed program H to build a new program that can't possibly be in the table!

Halting Problem

- Given: the code of a program \mathbf{P} and an input \mathbf{x} for \mathbf{P}, i.e. given $<\mathbf{P}, \mathbf{x}>$
- Output: 1 if \mathbf{P} halts on input \mathbf{x}
$\mathbf{0}$ if \mathbf{P} does not halt on input \mathbf{x}
- Theorem (Turing): There is no program that solves the halting problem
"The halting problem is undecidable"

Diagonal construction

- Consider a row corresponding to some program code <P>
- the infinite sequence of 0's and 1's in that row of the table is like a fingerprint of P
- Suppose a program for H exists
- Then it could be used to figure out the value of any entry in the table
- We'll use it to create a new program \mathbf{D} that has a different fingerprint from every row in the table
- But that's impossible since there is a row for every program! Contradiction

Code for D given subroutine for H

- Function $\mathrm{D}(\mathrm{x})$:

That's it!

- We proved that there is no computer program that can solve the Halting Problem.
- This tells us that there is no compiler that can check our programs and guarantee to find any infinite loops they might have
- The full story is even worse

Using the undecidability of the halting problem

- We have one problem that we know is impossible to solve
- Halting problem
- Showing this took serious effort
- We'd like to use this fact to derive that other problems are impossible to solve - don't want to go back to square one to do it

Another undecidable problem

- The "always halts" problem
- Given: <M>, the code of a program \mathbf{M}
- Output: $\mathbf{1}$ if \mathbf{M} halts on every input 0 if not.
- Claim: the "always halts" problem is undecidable
- Proof idea:
- Show we could solve the Halting Problem if we had a solution for the "always halts" problem.
- No program solving for Halting Problem exists \Rightarrow no program solving the "always halts" problem $\underset{\text { exists }}{\Rightarrow}$

What we would like

- To solve the Halting Problem need to handle inputs of the form $<P, x>$
- Our program will create a new program code <M> so that
- If P halts on input x - then M always halts
- If \mathbf{P} runs forever on input \mathbf{x}
- then M runs forever on at least one input
- In fact, the <M> we create will act the same on all inputs

The transformation	
int main()\{	int main()\{
...	\ldots
scanf("\%d",\&u);	$u=123 ;$
...	\ldots
scanf("\%d",\&v);	v = 712;
	...
\}	\}
123712	
<P, x >	<M>

Creating $<\mathrm{M}>$ from $<\mathrm{P}, \mathrm{x}>$

- Given $<\mathbf{P}, \mathbf{x}>$ modify code of \mathbf{P} to:
- Replace all input statements of \mathbf{P} that read input \mathbf{x}, by assignment statements that 'hard-code' \mathbf{x} in \mathbf{P}
- This creates a new program text <M>
- It would be easy to write a program T that changes $<\mathrm{P}, \mathrm{x}>$ to $<\mathrm{M}>$
- Suppose "always halts" were solvable by program A
- On input <P,x>
- execute the program \mathbf{T} to transform $<\mathbf{P}, \mathbf{x}>$ into <M>as on last slide
call \mathbf{A} with <M> (the output of T) as its input and use A's output as the answer.

What we would like

- To solve the Halting Problem need to be able to handle inputs of the form $<\mathbf{P}, \mathrm{x}>$
- We'll create a new program code <M> so that
- If \mathbf{P} halts on input \mathbf{x}
- then M always outputs "yes"
- If \mathbf{P} runs forever on input \mathbf{x}
- then \mathbf{M} does something else on at least one input.

Equivalent program problem

- Given: the codes of two programs, <P> and <Q>
- Output: $\mathbf{1}$ if \mathbf{P} produces the same output as \mathbf{Q} does on every input 0 otherwise

Exercise: Show that the equivalent

A general phenomenon:

Can't tell a book by its cover

- Suppose you have a problem C that asks, given program code $<\mathrm{P}>$, to determine some property of the input-output behavior of \mathbf{P}, answering 1 if P has the property and 0 if P doesn't have the property.
- Rice's Theorem: If C's answer isn't always the same then there is no program deciding \mathbf{C}

Even harder problems

- Recall that with the halting problem, we could always get at least one of the two answers correct
- if it halted we could always answer 1 (and this would cover precisely all 1 's we need to do) but we can't be sure about answering 0
- There are natural problems where you can't even do that!
- The equivalent program problem is an example of this kind of even harder problem.

Quick lessons

- Don't rely on the idea of improved compilers and programming languages to eliminate major programming errors
- truly safe languages can't possibly do general computation
- Document your code!!!!
- there is no way you can expect someone else to figure out what your program does with just your codesince....in general it is provably impossible to do this!

