
1

1

ACMS Seminar, Fridays 3:30-4:30
Smith 105

n Algorithms Theme
n Today: 3:30-4:30 Smith 105

n Primes is in P!
n Hot-off-the-newswire talk by Neal Koblitz

n new (this August) algorithm by Agrawal,
Kayal, and Saxena

n First deterministic polynomial-time
algorithm for testing whether a number
is prime!

2

Course Staff

n Instructor: Paul Beame beame@cs
n Office:Sieg 416 Hours:MW 1:20-2:00
n Phone:543-5114 F 2:00-3:00

n TAs:
n Deepak Verma deepak@cs

n Office: Sieg 226A Hours: Tu 12:00-1:00

n Michael Nelson nelsonmj@cs
n Office: Sieg 226A Hours: Th 3:30-4:30

3

CSE 417: Algorithms and
Computational
Complexity

Computability: Turing Machines
& The Halting Problem

Autumn 2002
Paul Beame

4

Computing & Mathematics

Computers as we know them grew out of
a desire to avoid bugs in mathematical
reasoning

5

A Brief History of Reasoning

n Ancient Greece
n Deductive logic

n Euclid’s Elements

n Infinite things are a problem
n Zeno’s paradox

6

A Brief History of Reasoning

n 1670’s-1800’s Calculus & infinite series
n Suddenly infinite stuff really matters
n Reasoning about infinite still a problem

n Tendency for buggy or hazy proofs

n Mid-late 1800’s
n Formal mathematical logic

n Boole Boolean Algebra
n Theory of infinite sets

n Cantor
“There are more real #’s than rational #’s”

2

7

A Brief History of Reasoning

n 1900
n Hilbert's famous speech outlines goal:

mechanize all of mathematics
23 problems

n 1930’s
n Gödel, Turing show that Hilbert’s

program is impossible.
Gödel’s Incompleteness Theorem
Undecidability of the Halting Problem

Both use ideas from Cantor’s proof about reals & rationals
8

A Brief History of Reasoning

n 1930’s
n How can we formalize what

algorithms are possible?
n Turing machines (Turing, Post)

n basis of modern computers

n Lambda Calculus (Church)
n basis for functional programming

n µ-recursive functions (Kleene)
n alternative functional programming basis

All
are

equivalent!

9

Turing Machines

Church-Turing Thesis
Any reasonable model of computation that

includes all possible algorithms is
equivalent in power to a Turing machine

n Evidence
n Huge numbers of equivalent models to

TM’s based on radically different ideas

10

What is a Turing Machine?

n Formal definition
n Turing & Post excerpts give descriptions

n Turing’s justification, based on intuition, that this is really
the right notion.

n Sipser handout gives full details

n Key properties
n Manipulates finite sequences of symbols

n Use a finite set of possible instructions
n Each does only a finite amount of work per step

n No a priori bound on resource usage
n Can always get more resources if needed

11

Turing Machine = Ideal C Program

n Ideal C/C++/Java programs
n Just like the C/C++/Java you’re used to

programming with, except you never run
out of memory
n malloc never fails
n constructor methods always succeed

n Equivalent to Turing machines except a
lot easier to program !
n Exact TM definition doesn’t matter to us so

we’ll just think of these programs as TM’s.

12

Turing machines as data

n Original Turing machine definition
n A different machine P for each task
n Each machine P is defined by a finite set of

possible operations on finite set of symbols
n P has a finite description as a sequence of

symbols, its code

n Notation:
n We’ll write <P> for the code of program P and

<P,x> for the pair of the program code and an
input x

n i.e. <P> is the program text as a sequence of
ASCII symbols and P is what actually executes

3

13

A Universal Turing Machine

n A Turing machine interpreter U
n On input <P> and its input x, U outputs the same

thing as P does on input x
n At each step it decodes which operation P would

have performed and simulates it.

n One Turing machine is enough!
n Basis for modern stored-program computer

n Von Neuman studied Turing’s UTM design

P
input

x
output
P(x) U

x output
P(x)

<P>
14

Halting Problem

n Given: the code of a program P and an
input x for P, i.e. given <P,x>

n Output: 1 if P halts on input x
0 if P does not halt on input x

n Theorem (Turing): There is no program
that solves the halting problem

“The halting problem is undecidable”

15

Undecidability of the Halting Problem

n Suppose that there is a program H that
computes the answer to the Halting
Problem

n We’ll build a table with
n all the possible programs down one side
n all the possible inputs along the other side

n Then we’ll use the supposed program H to
build a new program that can’t possibly be in
the table!

16

ε 0 1 00 01 10 11 000 001 010 011
input x

ε
0
1
00
01
10
11
000
001

.

.

pr
og

ra
m

 c
od

e
<P

>

0 1 1 0 1 1 1 0 0 0 1
1 1 0 1 0 1 1 0 1 1 1
1 0 1 0 0 0 0 0 0 0 1
0 1 1 0 1 0 1 1 0 1 0
0 1 1 1 1 1 1 0 0 0 1
1 1 0 0 0 1 1 0 1 1 1
1 0 1 1 0 0 0 0 0 0 1
0 1 1 1 1 0 1 1 0 1 0
.
.

(<P>,x) entry is 1 if program P halts on input x
and 0 if it runs forever

17

Diagonal construction

n Consider a row corresponding to some
program code <P>
n the infinite sequence of 0’s and 1’s in that row of

the table is like a fingerprint of P

n Suppose a program for H exists
n Then it could be used to figure out the value of any

entry in the table
n We’ll use it to create a new program D that has a

different fingerprint from every row in the table
n But that’s impossible since there is a row for every

program ! Contradiction

18

ε 0 1 00 01 10 11 000 001 010 011
input x

ε
0
1
00
01
10
11
000
001

.

.

pr
og

ra
m

 c
od

e
<P

>

0 1 1 0 1 1 1 0 0 0 1
1 1 0 1 0 1 1 0 1 1 1
1 0 1 0 0 0 0 0 0 0 1
0 1 1 0 1 0 1 1 0 1 0
0 1 1 1 1 1 1 0 0 0 1
1 1 0 0 0 1 1 0 1 1 1
1 0 1 1 0 0 0 0 0 0 1
0 1 1 1 1 0 1 1 0 1 0
.
.

(<P>,x) entry is 1 if program P halts on input x
and 0 if it runs forever

4

19

ε 0 1 00 01 10 11 000 001 010 011
input x

ε
0
1
00
01
10
11
000
001

.

.

pr
og

ra
m

 c
od

e
<P

>

0 1 1 0 1 1 1 0 0 0 1
1 1 0 1 0 1 1 0 1 1 1
1 0 1 0 0 0 0 0 0 0 1
0 1 1 0 1 0 1 1 0 1 0
0 1 1 1 1 1 1 0 0 0 1
1 1 0 0 0 1 1 0 1 1 1
1 0 1 1 0 0 0 0 0 0 1
0 1 1 1 1 0 1 1 0 1 0
.
.

(<P>,x) entry is 1 if program P halts on input x
and 0 if it runs forever

20

ε 0 1 00 01 10 11 000 001 010 011
input

ε
0
1
00
01
10
11
000
001

.

.

pr
og

ra
m

 c
od

e
<P

>

1 1 1 0 1 1 1 0 0 0 1
1 0 0 1 0 1 1 0 1 1 1
1 0 0 0 0 0 0 0 0 0 1
0 1 1 1 1 0 1 1 0 1 0
0 1 1 1 0 1 1 0 0 0 1
1 1 0 0 0 0 1 0 1 1 1
1 0 1 1 0 0 1 0 0 0 1
0 1 1 1 1 0 1 0 0 1 0
.
.

Want to create a new program whose halting
properties are given by the flipped diagonal

Flipped diagonal

21

Code for D given subroutine for H

n Function D(x):
n if H(x,x)=1 then

n while (true); /* loop forever */
n else

n no-op; /* do nothing and halt */
n endif

n D’s fingerprint is different from every
row of the table

22

That’s it!

n We proved that there is no computer
program that can solve the Halting
Problem.

n This tells us that there is no compiler
that can check our programs and
guarantee to find any infinite loops they
might have
n The full story is even worse

23

Using the undecidability of the
halting problem

n We have one problem that we know is
impossible to solve
n Halting problem

n Showing this took serious effort
n We’d like to use this fact to derive that

other problems are impossible to solve
n don’t want to go back to square one to do it

24

Another undecidable problem

n The “always halts” problem
n Given: <M>, the code of a program M
n Output: 1 if M halts on every input

0 if not.

n Claim: the “always halts” problem is
undecidable

n Proof idea:
n Show we could solve the Halting Problem if we

had a solution for the “always halts” problem.
n No program solving for Halting Problem exists

⇒ no program solving the “always halts” problem
exists

5

25

What we would like

n To solve the Halting Problem need to handle
inputs of the form <P,x>

n Our program will create a new program code
<M> so that
n If P halts on input x

n then M always halts
n If P runs forever on input x

n then M runs forever on at least one input

n In fact, the <M> we create will act the same
on all inputs

26

Creating <M> from <P,x>

n Given <P,x> modify code of P to:
n Replace all input statements of P that read

input x, by assignment statements that
‘hard-code’ x in P

n This creates a new program text <M>

n It would be easy to write a program T
that changes <P,x> to <M>

27

The transformation

int main(){
…
scanf(“%d”,&u);
…
scanf(“%d”,&v);
…
}

123 712

int main(){
…
u = 123;
…
v = 712;
…
}

<P,x> <M>
28

Program to solve Halting Problem if
“always halts” were decidable

n Suppose “always halts” were solvable
by program A

n On input <P,x>
n execute the program T to transform <P,x>

into <M> as on last slide
n call A with <M> (the output of T) as its

input and use A’s output as the answer.

29

Another undecidable problem

n The “yes” problem
n Given: <M>, the code of a program M
n Output: 1 if M outputs “yes” on every input

0 if not.

n Claim: the “yes” problem is undecidable
n Proof idea:

n Show we could solve the Halting Problem if we
had a solution for the “yes” problem.

n No program solving for Halting Problem exists
⇒ no program solving the “yes ” problem exists

30

What we would like

n To solve the Halting Problem need to be
able to handle inputs of the form <P,x>

n We’ll create a new program code <M>
so that
n If P halts on input x

n then M always outputs “yes”
n If P runs forever on input x

n then M does something else on at least
one input.

6

31

Creating <M> from <P,x>

n Given <P,x> modify code of P to:
n Remove all output statements from P
n Replace all input statements of P that read

input x, by assignment statements that
hard-code x in P

n Add a new last statement that prints “yes”
n This creates a new program text <M>

n It would be easy to write a program T
that changes <P,x> to <M>

32

Program to solve Halting Problem if
the “yes” problem were decidable

n Suppose the “yes” problem were
solvable by program Y

n On input <P,x>
n execute the code to transform <P,x> into

<M> as on last slide
n call Y with <M> (the output of T) as its input

and use Y’s output as the answer.

33

Equivalent program problem

n Given: the codes of two programs, <P>
and <Q>

n Output: 1 if P produces the same output
as Q does on every input

0 otherwise

Exercise: Show that the equivalent
program problem is undecidable.

34

A general phenomenon:
Can’t tell a book by its cover

n Suppose you have a problem C that asks,
given program code <P>, to determine some
property of the input-output behavior of P,
answering 1 if P has the property and 0 if P
doesn’t have the property.

n Rice’s Theorem: If C’s answer isn’t always
the same then there is no program deciding C

35

Even harder problems

n Recall that with the halting problem, we could
always get at least one of the two answers
correct
n if it halted we could always answer 1 (and this

would cover precisely all 1’s we need to do) but
we can’t be sure about answering 0

n There are natural problems where you can’t
even do that!
n The equivalent program problem is an example of

this kind of even harder problem.

36

Quick lessons

n Don’t rely on the idea of improved
compilers and programming languages
to eliminate major programming errors
n truly safe languages can’t possibly do

general computation
n Document your code!!!!

n there is no way you can expect someone
else to figure out what your program does
with just your codesince....in general it
is provably impossible to do this!

