

Polynomial versus exponential

- We'll say any algorithm whose run-time is
- polynomial is good
- bigger than polynomial is bad
- Note - of course there are exceptions:
- \boldsymbol{n}^{100} is bigger than $(1.001)^{\text {n }}$ for most practical values of n but usually such run-times don't show up
- There are algorithms that have run-times like $\mathrm{O}\left(2^{1 / 22}\right)$ and these may be useful for small input sizes, but they're not too common either

Some Terminology

- "Problem"
- The general case of a computational task
- E.g. Given: a graph G and and nodes s and t in \mathbf{G} does \mathbf{G} contain a path from \mathbf{s} to t?
- "Problem Instance"
- A specific input for a problem, e.g.

- Decision Problems - Just YES/NO answers
- Inputs requiring output YES are called YES instances, NO instances defined similarly

Beyond T ?

- There are many natural, practical problems for which we don't know any polynomial-time algorithms
- e.g. decisionTSP:
- Given a weighted graph G and an integer \mathbf{k}, does there exist a tour that visits all vertices in \mathbf{G} having total weight at most \mathbf{k} ?

	Solving TSP given a solution to decisionTSP
Use binary search and several calls to	
decisionTSP to figure out what the exact total	
weight of the shortest tour is.	
- Upper and lower bounds start are n times	
largest and smallest weights of edges,	
respectively	
- Call W the weight of the shortest tour.	
- Now figure out which edges are in the tour	
- For each edge e in the graph in turn, remove e	
and see if there is a tour of weight at most W using	
decisionTSP	
= if not then e must be in the tour so put it back	

More examples

- Independent-Set:
- Given a graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ and an integer \mathbf{k}, is there a subset \mathbf{U} of \mathbf{V} with $|\mathbf{U}| \geq \mathbf{k}$ such that no two vertices in \mathbf{U} are joined by an edge.
- Clique:
- Given a graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ and an integer \mathbf{k}, is there a subset \mathbf{U} of \mathbf{V} with $|\mathbf{U}| \geq \mathbf{k}$ such that every pair of vertices in \mathbf{U} is joined by an edge.

More History - As of 1970

- Many of the above problems had been studied for decades
- All had real, practical applications
- None had polynomial time algorithms; exponential was best known
- But, it turns out they all have a very deep similarity under the skin

Common property of these problems

- There is a special piece of information, a short hint or proof, that allows you to efficiently verify (in polynomial-time) that the YES answer is correct. This hint might be very hard to find
- e.g.
- DecisionTSP: the tour itself,
- Independent-Set, Clique: the set U
- Satisfiability: an assignment that makes F true.

The complexity class $\mathcal{N} P$

$\mathcal{N}(P$ consists of all decision problems where

- You can verify the YES answers efficiently (in polynomial time) given a short (polynomial-size) hint

And

- No hint can fool your polynomial time verifier into saying YES for a NO instance

More Precise Definition of $\mathfrak{N}(P$

- A decision problem is in NP iff there is a polynomial time procedure verify(...), and an integer k such that
- for every input \mathbf{x} to the problem that is a YES instance there is a hint \mathbf{h} with $|\mathbf{h}| \leq|\mathbf{x}|^{\mathbf{k}}$ such that verify $(\mathbf{x}, \mathbf{h})=$ YES
and
- for every input \mathbf{x} to the problem that is a NO instance there does not exist a hint h with $|\mathbf{h}| \leq|\mathbf{x}|^{k}$ such that verify $(\mathbf{x}, \mathbf{h})=$ YES

Is it correct?

For every $\mathbf{x}=(\mathbf{G}, \mathbf{k})$ such that \mathbf{G} contains a k -clique, there is a hint h that will cause verify (x, h) to say YES,

- $\mathbf{h}=\mathbf{a}$ list of the vertices in such a \mathbf{k}-clique

And no hint can fool verify($\mathbf{x}, \cdot)$ into saying YES if either

- x isn't well-formed (the uninteresting case)
- $\mathbf{x}=(\mathbf{G}, \mathbf{k})$ but \mathbf{G} does not have any cliques of size \mathbf{k} (the interesting case)

Keys to showing that
 a problem is in NP

- What's the output? (must be YES/NO)
- What must the input look like?
- Which inputs need a YES answer?
- Call such inputs YES inputs/YES instances
- For every given YES input, is there a hint that would help?
- OK if some inputs need no hint
- For any given NO input, is there a hint that would trick you?

Solving NP problems

without hints

- The only obvious algorithm for most of these problems is brute force:
- try all possible hints and check each one to see if it works.
- Exponential time:
- 2^{n} truth assignments for n variables
- n ! possible TSP tours of n vertices
- ($\left.\begin{array}{l}\mathbf{n} \\ \mathbf{k}\end{array}\right)$ possible \mathbf{k} element subsets of \mathbf{n} vertices - etc.

What We Know

- Nobody knows if all problems in NP can be done in polynomial time, i.e. does $\mathbf{P}=\mathbf{N P}$?
- one of the most important open questions in all of science.
- huge practical implications
- Every problem in \mathbf{P} is in NP
- one doesn't even need a hint for problems in P so just ignore any hint you are given
- Every problem in NP is in exponential time

NP-hardness \&
 NP-completeness

- Some problems in NP seem hard
- people have looked for efficient algorithms for them for hundreds of years without success
- However
- nobody knows how to prove that they are really hard to solve, i.e. $\mathbf{P} \neq \mathbf{N P}$

NP-hardness \& NP-completeness

- Alternative approach
- show that they are at least as hard as any problem in NP
- Rough definition:
- A problem is NP-hard iff it is at least as hard as any problem in NP
- A problem is NP-complete iff it is both - NP-hard - in NP

How do we show that one problem is 'at least as hard as' another?

- We've done this before in a different context
- We used the undecidability of the halting problem to show that other problems were undecidable
- This really amounted to showing that those other problems were 'at least as hard as' the halting problem in some sense

To show that problem A is at least as hard as the Halting Problem

- We created a program \mathbf{H} that solved the Halting Problem using a program for \mathbf{A} as a subroutine
- This involved creating some transformation code \mathbf{T} that took the input $<\mathbf{P}, \mathbf{x}>$ for the Halting Problem and converted it to an input y for A
- For historical reasons this transformation \mathbf{T} is called a reduction

Reductions: What we did

- We write: Halting Problem $\leq \mathbf{A}$
- We transformed an instance of Halting Problem into an instance of A such that A's answer is Halting Problem's.
- Function $\mathbf{H}(\mathbf{z})$
- Run program \mathbf{T} to translate input \mathbf{z} for \mathbf{H} into an input y for A
- Call a subroutine for problem A on input y
- Output the answer produced by $\mathbf{A}(\mathbf{y})$
- (\mathbf{z} was of the form $<\mathbf{P}, \mathbf{x}>$.)

Why the name reduction?

- Weird: it maps an easier problem into a harder one
- Same sense as saying Maxwell reduced the problem of analyzing electricity \& magnetism to solving partial differential equations
- solving partial differential equations in general is a much harder problem than solving E\&M problems

A geek joke

- An engineer
- is placed in a kitchen with an empty kettle on the table and told to boil water; she fills the kettle with water, puts it on the stove, turns on the gas and boils water.
- she is next confronted with a kettle full of water sitting on the counter and told to boil water; she puts it on the stove, turns on the gas and boils water.
- A mathematician
- is placed in a kitchen with an empty kettle on the table and told to boil water; he fills the kettle with water, puts it on the stove, turns on the gas and boils water.
- he is next confronted with a kettle full of water sitting on the counter and told to boil water: he empties the kettle in the sink, places the empty kettle on the table and says, "l've reduced this to an already solved problem"

Independent-Set \leq^{p} Clique

- Given (G,k) as input to Independent-Set where $\mathbf{G}=(\mathbf{V}, \mathrm{E})$
- Transform to ($\mathbf{G}^{\prime}, \mathbf{k}$) where $\mathbf{G}^{\prime}=\left(\mathbf{V}, \mathbf{E}^{\prime}\right)$ has the same vertices as G but E^{\prime} consists of precisely those edges that are not edges of G
- \mathbf{U} is an independent set in \mathbf{G}
$\Leftrightarrow \mathbf{U}$ is a clique in \mathbf{G}^{\prime}

Reductions Exercise

- Show: Independent Set $\leq^{\text {p }}$ Vertex-Cover
- Vertex-Cover:
- Given an undirected graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ and an integer \mathbf{k} is there a subset W of V of size at most \mathbf{k} such that every edge of G has at least one endpoint in W? (i.e. W covers all vertices of G).
- Independent-Set:
- Given a graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ and an integer \mathbf{k}, is there a subset \mathbf{U} of \mathbf{V} with $|\mathbf{U}| \geq \mathbf{k}$ such that no two vertices in U are joined by an edge.

NP-hardness \&

NP-completeness

- Definition: A problem R is NP-hard iff every problem $L \in N P$ satisfies $L \leq{ }^{p} \mathbf{R}$
- Definition: A problem \mathbf{R} is NP-complete iff \mathbf{R} is $N P$-hard and $\mathbf{R} \in \mathbf{N P}$
- Even though we seem to have lots of hard problems in NP it is not obvious that such super-hard problems even exist!

	Implications of Cook's Theorem?
- There is at least one interesting super-	
hard problem in NP	
- Is that such a big deal?	
- YES!	
- There are lots of other problems that can	
be solved if we had a polynomial-time	
algorithm for Satisfiability	
- Many of these problems are exactly as	
hard as Satisfiability	

Cook's Theorem \& Implications

- Theorem (Cook 1971): Satisfiability is NP-complete
- Corollary: \mathbf{R} is NP-hard \Leftrightarrow Satisfiability $\leq^{p} \mathbf{R}$ - (or $\mathbf{Q} \leq{ }^{\mathrm{P}} \mathrm{R}$ for any NP-complete problem Q)
- Proof:
- If R is NP-hard then every problem in NP polynomial-time reduces to \mathbf{R}, in particular Satisfiability does since it is in NP
- For any problem L in $N P, L \leq^{p}$ Satisfiability and so if Satisfiability $\leq^{p} R$ we have $L \leq^{p} R$. - therefore R is NP-hard if Satisfiability $\leq^{p} R$

Another NP-complete problem: Satisfiability \leq^{p} Independent-Set

- A Tricky Reduction:
- mapping CNF formula F to a pair <G,k>
- Let \mathbf{m} be the number of clauses of F
- Create a vertex in \mathbf{G} for each literal in F
- Join two vertices \mathbf{u}, \mathbf{v} in \mathbf{G} by an edge iff
- \mathbf{u} and \mathbf{v} correspond to literals in the same clause of F, (green edges) or
- \mathbf{u} and \mathbf{v} correspond to literals \mathbf{x} and $\neg \mathbf{x}$ (or vice versa) for some variable \mathbf{x}. (red edges).
- Set $\mathbf{k}=\mathbf{m}$
- Clearly polynomial-time

Satisfiability $\leq^{\text {P}}$ Independent-Set

- Correctness:
- If F is satisfiable then there is some assignment that satisfies at least one literal in each clause.
- Consider the set \mathbf{U} in \mathbf{G} corresponding to the first satisfied literal in each clause.
- $|\mathbf{U}|=\mathbf{m}$
- Since U has only one vertex per clause, no two vertices in U are joined by green edges
- Since a truth assignment never satisfies both \mathbf{x} and $\neg \mathbf{x}$, U doesn't contain vertices labeled both \mathbf{x} and $\neg \mathrm{x}$ and so no vertices in U are joined by red edges
- Therefore G has an independent set, U, of size at least m
- Therefore < G, m> is a YES for independent set.

Satisfiability $\leq{ }^{\text {P}}$ Independent-Set

Given \mathbf{U}, satisfying assignment is $x_{1}=x_{3}=x_{4}=0, x_{2}=0$ or 1

Problems we already know are NPcomplete

- Satisfiability
- Independent-Set
- Clique
- Vertex-Cover
- There are 1000's of practical problems that are NP-complete, e.g. scheduling, optimal VLSI layout etc.

Is NP as bad as it gets?

- NO! NP-complete problems are frequently encountered, but there's worse:
- Some problems provably require exponential time.
- Ex: Does \mathbf{P} halt on \mathbf{x} in $\mathbf{2}^{|x|}$ steps?
- Some require $2^{n}, 2^{2^{n}}, 2^{2^{2^{n}}}, \ldots$ steps
- And of course, some are just plain uncomputable

