

- Given an undirected graph G=(V,E) with each edge e having a weight w(e)
- Find a subgraph T of G of minimum total weight s.t. every pair of vertices connected in G are also connected in T
 - if G is connected then T is a tree otherwise it is a forest

Weighted Undirected Graph

7 b 5

0 3 4

7 b 5

0 5 8

0 5 8

4

First Greedy Algorithm

- Prim's Algorithm:
- start at a vertex v
- add the cheapest edge adjacent to v
- repeatedly add the cheapest edge that joins the vertices explored so far to the rest of the graph.

Why a greedy algorithm works here

- Definition: Given a graph G=(V,E), a cut of G is a partition of V into two non-empty pieces, S and V-S
- Lemma: For every cut (S,V-S) of G, there is a minimum spanning tree (or forest) containing any cheapest edge crossing the cut, i.e. connecting some node in S with some node in V-S.
 - call such an edge safe

The greedy algorithm always chooses a safe edges

- Prim's Algorithm
 - Always chooses cheapest edge from current tree to rest of the graph
 - This is cheapest edge across a cut which has the vertices of that tree on one side.

Naive Prim's Algorithm Implementation & Analysis

- Computing the minimum weight edge at each stage.
 - O(m) per step (new vertex)
- n vertices in total
- O(nm) overall

Data Structure Review

- **Priority Queue:**
- Elements each with an associated key
- Operations
 - Insert Find-min
 - Return the element with the smallest key
 Delete-min
 - - Return the element with the smallest key and delete it from the data structure

 - Decrease-key

 Decrease the key value of some element
- Implementations
- Arrays: O(n) time find/delete-min, O(1) time insert/ decrease-key
- Heaps: O(log n) time insert/find/delete-min, O(1) time decrease-key

Prim's Algorithm with Priority Queues

- For each vertex **u** not in tree maintain current cheapest edge from tree to u
 - Store u in priority queue with key = weight of this edge
- Operations:
 - n-1 insertions (each vertex added once)
 - n-1 delete-mins (each vertex deleted once)
 - pick the vertex of smallest key, remove it from the priority queue and add its edge to the graph
 - <m decrease-keys (each edge updates one</p>

Prim's Algorithm with Priority **Queues**

- Priority queue implementations
 - Array
 - insert O(1), delete-min O(n), decrease-key O(1)
 - total O(n+n²+m)=O(n²)
 - - insert, delete-min, decrease-key all O(log n)
 - total O(m log n)
 - d-Heap (d=m/n)
 - insert, delete-min, decrease-key all O(log_{m/n} n)
 - total O(m log_{m/n} n)

Single-source shortest paths

- Given an (un)directed graph G=(V,E) with each edge e having a non-negative weight w(e) and a vertex v
- Find length of shortest paths from v to each vertex in G

3

A greedy algorithm

- Dijkstra's Algorithm:
 - Maintain a set S of vertices whose shortest paths are known
 - initially S={v}
 - Maintaining current best lengths of paths that only go through S to each of the vertices in G
 - path-lengths to elements of S will be right, to V-S they might not be right
 - Repeatedly add vertex u to S that has the shortest path-length of any vertex in V-S
 - update path lengths based on new paths through u

14

4

Implementing Dijkstra's Algorithm

- Need to
 - keep current distance values for nodes in V-S
 - find minimum current distance value
 - reduce distances when vertex moved to S
- Same operations as priority queue version of Prim's Algorithm
 - only difference is rule for updating values
 - node value + edge-weight vs edge-weight alone
 - same run-times as Prim's Algorithm O(m log n)

44