CSE 417: Algorithms and
Computational
Complexity

Greedy Graph Algorithms

Autumn 2002
Paul Beame

4 Minimum Spanning Trees (Forests)

= Given an undirected graph G=(V,E) with
each edge e having a weight w(e)

= Find a subgraph T of G of minimum
total weight s.t. every pair of vertices
connected in G are also connected in T

= if G is connected then T is a tree otherwise
it is a forest

a ‘ Weighted Undirected Graph
7 ®5
@,
S0 i 8
O

4 First Greedy Algorithm

= Prim’s Algorithm:
= Start at a vertex v
= add the cheapest edge adjacent to v

= repeatedly add the cheapest edge that
joins the vertices explored so far to the rest
of the graph.

* | Why a greedy algorithm works here

= Definition: Given a graph G=(V,E), a cut of
G is a partition of V into two non-empty
pieces, S and V-S

= Lemma: For every cut (S,V-S) of G, there is
a minimum spanning tree (or forest)
containing any cheapest edge crossing the
cut, i.e. connecting some node in S with
some node in V-S.

= call such an edge safe

g Cus and Spanning Trees




The greedy algorithm always
4 ‘ chooses a safe edges 4 Prim’s Algorithm
= Prim’s Algorithm
= Always chooses cheapest edge from
current tree to rest of the graph
= This is cheapest edge across a cut which
has the vertices of that tree on one side.

Naive Prim’s Algorithm
4 Data Structure Review

q ‘ Implementation & Analysis
= Priority Queue:
= Elements each with an associated key

= Computing the minimum weight edge at
= Operations

each stage.
= Insert
= O(m) per step (new vertex) « Find-min
= Return the element with the smallest key

= Delete-min
Return the element with the smallest key and delete it from the

= N vertices in total data structure
= Decrease-key
= Decrease the key value of some element

= Implementations
O(n) time find/delete-min, O(1) time insert/

u O(nm) overall = Arrays:
decrease-key
= Heaps: O(log n) time insert/find/delete-min, O(1) time
decrease-key

10

Prim’s Algorithm with Priority

Prim’s Algorithm with Priority
‘ﬁ Queues 1 Queues

= For each vertex u not in tree maintain current = Priority queue implementations

cheapest edge from tree to u = Array
= Store u in priority queue with key = weight = insert O(1), delete-min O(n), decrease-key O(1)
of this edge = total O(n+n2+m)=0(n?)
= Operations: " Heép '
» n-1 insertions (each vertex added once) = insert, delete-min, decrease-key all O(log n)

= n-1 delete-mins (each vertex deleted once) = total O(m log n)

= pick the vertex of smallest key, remove it from - d—Heap (d=m/n) _
the priority queue and add its edge to the graph = insert, delete-min, decrease-key all O(log,,,, n)

= total O(m log,,, N)

= <m decrease-keys (each edge updates one

vertex)
12




= Given an (un)directed graph G=(V,E)
with each edge e having a non-negative
weight w(e) and a vertex v

= Find length of shortest paths from v to
each vertex in G

= Dijkstra’s Algorithm:
= Maintain a set S of vertices whose shortest paths
are known
= initially S={v}
= Maintaining current best lengths of paths that only
go through S to each of the vertices in G
= path-lengths to elements of S will be right, to V-
S they might not be right
= Repeatedly add vertex u to S that has the shortest
path-length of any vertex in V-S
= update path lengths based on new paths
through u

14

16

Dijkstra’s Algorithm

18




Dijkstra’s Algorithm Q Dijkstra’s Algorithm




q

‘ Dijkstra’s Algorithm

4 Dijkstra’s Algorithm

Add to S

10 @ N

28

Dijkstra’s Algorithm

Q Dijkstra’s Algorithm

30




q

‘ Dijkstra’s Algorithm

4 Dijkstra’s Algorithm

32

34

Dijkstra’s Algorithm

Q Dijkstra’s Algorithm

36




4 ‘ Dijkstra’s Algorithm

4 Dijkstra’s Algorithm

Add to S

38

Suppose all distances to vertices in S are correct
and u has smallest current value in V-S

\ distance value of vertex in V-S=length of shortest path from v
with only last edge leaving S

Suppose some other
ath to u and x= first vertex
on this path notin S

d(u)E d(x)
x-u path length 3 0
\ other path is longer

Therefore adding u to S keeps correct distances
39

4 Dijkstra’s Algorithm

= Algorithm also produces a tree of
shortest paths to v

= From w follow its ancestors in the tree
back tov

= If all you care about is the shortest path
from v to w simply stop the algorithm
when w is added to S

40

= Needto
= keep current distance values for nodes in V-S
= find minimum current distance value
= reduce distances when vertex moved to S
= Same operations as priority queue version of Prim’s
Algorithm
= only difference is rule for updating values

= node value + edge-weight vs edge-weight
alone

= same run-times as Prim’s Algorithm O(m log n)




