

Topological Sort

- Given: a directed acyclic graph (DAG) $\mathbf{G}=(\mathbf{V}, \mathbf{E})$
- Output: numbering of the vertices of G with distinct numbers from 1 to n so edges only go from lower number to higher numbered vertices
- Applications
- nodes represent tasks
- edges represent precedence between tasks
- topological sort gives a sequential schedule for solving them

The Maximum Matching Problem

- Often would like to find a perfect matching one with an edge touching every node in the graph
- In our example, a perfect matching would correspond to an assignment of instructors to courses that would make sure that every course is covered and every instructor is busy teaching

1 A Greedy Approach

M? Ø
while (there is some edge $\mathbf{e} \in \mathbf{E}$
not touching any edge of \mathbf{M}) do Add \mathbf{e} to \mathbf{M}

- More generally, the maximum matching problem asks the following
- Given: a graph $\mathbf{G}=(\mathbf{V}, \mathrm{E})$
- Find: a matching M in G such that contains as many edges as possible

Replace the red edge with the two blue edges
Based on a path that starts and ends at an unmatched vertex

$$
\begin{aligned}
& \text { Based on a path that starts and } \\
& \text { ends at an unmatched vertex }
\end{aligned}
$$

Alternating Paths

- M' has more edges than M does
- the graph of M $\cup \mathbf{M}^{\prime}$ must have a component with a blue surplus
- Therefore G has an alternating path with respect to \mathbf{M}

Finding Alternating Paths

Finding Alternating Paths

Finding Alternating Paths

Finding Alternating Paths

- The search was like breadth-first search
- except that when we hit a matched edge we were forced to follow it
- We traversed
- unmatched edges from top to bottom
- matched edges from bottom to top
- To enforce this behavior
- Direct all unmatched edges top to bottom
- Direct all matched edges bottom to top

Running time for matching

- Finding the greedy matching is $\mathbf{O}(\mathbf{n}+\mathbf{m})$ time
- Finding each alternating path is BFS
- O(n+m) time
- Each alternating path increases matching size by 1
- Total of at most $\mathbf{n} / \mathbf{2}$ rounds of finding alternating paths
- Total run time $\mathbf{O}\left(n m+n^{2}\right)$
- Can do a bit better

BFS from multiple unmatched nodes

- If the algorithm
- does a single BFS from all unmatched top nodes
- stops at the level where the first unmatched bottom node is found
- flips all alternating paths that reach that level
- Then
- Only $\mathbf{O}(\sqrt{n})$ rounds needed (proof is complicated) - Total $\mathbf{O}\left(\mathbf{m} \sqrt{n}+\mathbf{n}^{3 / 2}\right)$ time needed

- How much stuff can flow from s to t?
- Lots of applications

Bipartite matching as a special case of flow

