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Topological Sort

n Given: a directed acyclic graph (DAG) G=(V,E)
n Output: numbering of the vertices of G with 

distinct numbers from 1 to n so edges only go 
from lower number to higher numbered vertices

n Applications
n nodes represent tasks
n edges represent precedence between tasks
n topological sort gives a sequential schedule 

for solving them 
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Directed Acyclic Graph
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Topological Sort

n Can do using DFS (see book)

n Alternative simpler idea:
n Any vertex of in-degree 0 can  be given 

number 1 to start
n Remove it from the graph and then give a 

vertex of in-degree 0 number 2, etc. 
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Implementing Topological Sort

n Go through all edges, computing in-degree 
for each vertex     O(m+n)

n Maintain a queue (or stack) of vertices of           
in-degree 0

n Remove any vertex in queue and number it
n When a vertex is removed, decrease in-

degree of each of its neighbors by 1 and add 
them to the queue if their degree drops to 0

n Total cost O(m+n)
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Matchings and Bipartite Graphs

n Given a graph G=(V,E)
n a subset M ⊆ E of edges is a matching iff no two 

edges of M share an endpoint

n Many graphs in practice have two types of 
nodes and all edges join nodes of different 
types
n e.g., each node is either 

n the name i of an instructor or 
n a course number c

(i,c) is an edge iff instructor i can teach course c

n These graphs are called bipartite
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The Maximum Matching Problem

n Often would like to find a perfect matching –
one with an edge touching every node in the 
graph
n In our example, a perfect matching would 

correspond to an assignment of instructors to 
courses that would make sure that every course is 
covered and every instructor is busy teaching 

n More generally, the maximum matching 
problem asks the following
n Given: a graph G=(V,E)
n Find: a matching M in G such that contains 

as many edges as possible
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A Greedy Approach 

M? ∅
while (there is some edge e∈E

not touching any edge of M) do
Add e to M
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Greed doesn’t always work

Greedy Matching

Perfect Matching
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Start with a Greedy Matching
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Improving a Matching

Replace the red edge with the two blue edges

Based on a path that starts and 
ends at an unmatched vertex
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Improving a Matching
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Improving a Matching

Replace the red edges with the blue edges

Based on a path that starts and 
ends at an unmatched vertex
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Improving a Matching
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Alternating Paths

n Given a graph G and a matching M in G, an 
alternating path is a path that
n Starts at an unmatched vertex of G
n Ends at an unmatched vertex of G
n Has edges that alternate between being in M and 

not being in M

n If there is an alternating path P in graph G
with respect to M then we can improve M by 
“flipping” edges on the path, i.e.
n Remove all edges of P previously in M
n Add all edges of P previously not in M
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Alternating Paths

n Maximum Bipartite Matching Algorithm:
M ← greedy matching
while (there is an alternating path P with 

respect to M) do
flip the edges along P

n Why does it work?
n Need to show that 

n if a larger matching than M exists in G
then there will be an alternating path in G with 
respect to M
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Alternating paths exist

n Lemma: Suppose that M and M’ are 
matchings in graph G and |M|<|M’| then there 
is an alternating path in G with respect to M

n Proof idea:
n Take the graph consisting of the edges of both M

and M’
n Every vertex is touched by at most 2 edges

n Graph consists of a collection of paths and 
cycles
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Alternating Paths

n Possibilities
n Overlapping edges

n Even length cycles

n Paths

same # of red 
and blue edges

red surplus blue surplus = alternating path for M
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Alternating Paths

n M’ has more edges than M does 
n the graph of M∪M’ must have a 

component with a blue surplus

n Therefore G has an alternating path with 
respect to M
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Our example

Greedy Matching

Perfect Matching

35

Our example
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Ignore places where M and M’ agree
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Alternating Paths
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Finding Alternating Paths
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Finding Alternating Paths
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Finding Alternating Paths
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Finding Alternating Paths

n The search was like breadth-first search
n except that when we hit a matched edge 

we were forced to follow it

n We traversed 
n unmatched edges from top to bottom 
n matched edges from bottom to top

n To enforce this behavior
n Direct all unmatched edges top to bottom
n Direct all matched edges bottom to top
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Directing the graph

Now run ordinary breadth-first search
from each unmatched node on top
until we reach another unmatched node 
(which will be on the bottom)
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Searching from a single unmatched 
node

Original graph

In this picture the graph is 
repeated so it is easier to 
see the execution

The actual search works on
the original graph

Top

Bottom

Top

Top

Bottom

Bottom
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Running time for matching

n Finding the greedy matching is O(n+m) time
n Finding each alternating path is BFS 

n O(n+m) time

n Each alternating path increases matching 
size by 1
n Total of at most n/2 rounds of finding alternating 

paths

n Total run time O(nm+n2)

n Can do a bit better 
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Searching from all top unmatched 
nodes in one round of BFS

Original graph

In this picture the graph is 
repeated so it is easier to 
see the execution

The actual search works on
the original graph

Top

Bottom

Top

Top

Bottom

Bottom
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Searching from all top unmatched 
nodes in one round of BFS

Original graph

Flip more than one alternating
path at the same time

Since each node appears at
most once in a BFS tree 
these paths don’t conflict

Top

Bottom

Top

Top

Bottom

Bottom
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BFS from multiple unmatched nodes

n If the algorithm
n does a single BFS from all unmatched top nodes
n stops at the level where the first unmatched  

bottom node is found
n flips all alternating paths that reach that level

n Then
n Only O(√n) rounds needed (proof is complicated)

n Total O(m√n + n3/2) time needed
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Using similar ideas can solve

n Network Flow problem

n How much stuff can flow from s to t?

n Lots of applications
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Bipartite matching as a special case 
of flow
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