
1

1

CSE 417:  Algorithms and 
Computational 
Complexity

Graphs & Graph Algorithms II

Autumn 2002
Paul Beame

2

Depth-First Search

n Follow the first path you find as far as 
you can go

n Back up to last unexplored edge when 
you reach a dead end, then go as far 
you can 

n Naturally implemented using recursive 
calls or a stack
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DFS(v) – Recursive version

Global Initialization: mark all vertices "undiscovered"
DFS(v)

mark v “discovered”
for each edge {v,x}

if (x is “undiscovered”)
DFS(x)

end for
mark v “fully-explored”
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Properties of DFS(v)

n Like BFS(v):
n DFS(v) visits x if and only if there is a path in G

from v to x
n Edges into undiscovered vertices define a tree

n "depth first spanning tree" of G
n Unlike the BFS tree: 

n the DFS spanning tree isn't minimum depth
n its levels don't reflect min distance from the root
n non-tree edges never join vertices on the same or 

adjacent levels
n BUT…
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Non-tree edges

n All non-tree edges join a vertex and one 
of its descendents/ancestors in the DFS 
tree

n No cross edges!
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App lication : Articulation Points

n A node in an undirected graph is an 
articulation point iff removing it 
disconnects the graph

n articulation points represent 
vulnerabilities in a network – single 
points whose failure would split the 
network into 2 or more disconnected 
components
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Ar ticulation Points

1

2
10

9

8

3

7

6

4

5

11
12

13

28

Ar ticulation Points from DFS

n Non-tree edges eliminate articulation points

n Root  node is articulation point ⇔ it has more 
than one child

n Leaf nodes are never articulation points

n Other nodes u are articulation points ⇔
n no non-tree edges going from some child of u to 

above u in the tree
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Ar ticulation Points from DFS

n For each vertex v compute 
n small(v)

n the smallest number of a node pointed at by 
any descendant of v in the DFS tree (including 
v itself)

n Can compute small(v) for every v during DFS at 
minimal extra cost

n Non-leaf, non-root node u is an articulation point ⇔
for some child v of u
n small(v) = DFSnumber(u)
n Easy to compute and check during DFS
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DFS(v) – Recursive version

Global Initialization: 
mark all vertices u "undiscovered” via dfsnum[u] ← -1
dfscounter ← 0

DFS(v)

dfscounter ← dfscounter+1
dfsnum[v] ← dfscounter // mark  v “discovered”
for each edge (v,x)

if (dfsnum[x] = -1) // x previously  undiscovered
add edge (v,x) to DFStree
DFS(x)

// mark v “fully-explored”
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DFS(v) for
Finding Articulation Points

Global initialization: dfsnum[u] ← -1 for all u; dfscounter ←0
DFS(v)
dfscounter ← dfscounter+1
dfsnum[v] ← dfscounter
small[v] ← dfsnum[v] // initialization
for each edge {v,x}

if (dfsnum[x] = -1)  // x is undiscovered
DFS(x)
if (small[x] >= dfsnum[v])

print “v is an articulation point, separating x” 
small[v] ← min(small[v], small[x])

else if (x is not v’s parent)
small[v] ← min(small[v], dfsnum[x])

Check that {v,x} 
is a back edge

(not a tree edge)

Note: need a separate check for the root
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1 1
2 1         
3           1             Y
4 3 
5 3
6 3
7 3
8 1 Y
9 9

10 1             Y
11 10
12 10             Y
13 13
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DFS(v) for a directed graph
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back edges

forward 
edges

← cross edges 

NO → cross edges
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Properties of Directed DFS

n Before DFS(v) returns, it visits all 
previously unvisited vertices reachable 
via directed paths from v

n Every cycle contains a back edge in the 
DFS tree
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Strongly-connected components

n In directed graph if there is a path from 
a to b there might not be one from b to a

n a and b are strongly connected iff
there is a path in both directions (i.e. a 
directed cycle containing both a and b

n Breaks graph into components
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Uses for SCC’s

n Optimizing compilers:
n SCC’s in the program flow graph = "loops"
n SCC’s in call-graph = mutually recursive 

procedures

n Operating systems: If (u,v) means process u
is waiting for process v, SCC’s  show 
deadlocks.

n Econometrics: SCC's might show highly 
interdependent sectors of the economy
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Directed Acyclic Graphs

n If we collapse each SCC to a single vertex we 
get a directed graph with no cycles
n a directed acyclic graph or DAG

n Many problems on directed graphs can be 
solved as follows:
n Compute SCC’s and resulting DAG
n Do one computation on each SCC
n Do another computation on the overall DAG 
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Simple SCC Algorithm

n u,v in same SCC iff there are 
paths u → v & v → u

n DFS/BFS from every u, v: 
n Time O(nm) = O(n3)
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Better method

n Can compute all the SCC’s while doing 
a single DFS!  O(n+m) time

n We won’t do the full algorithm but will 
give some ideas
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Definition

The root of an SCC is the first vertex in 
it visited by DFS.

Equivalently, the root is the vertex in the 
SCC with the smallest number in DFS 
ordering.
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Subgoal

n All members of an SCC are 
descendants of its root.

n Can we identify some root?

n How about the root of the first SCC 
completely explored by DFS?

n Key idea: no exit from first SCC
n first SCC is leftmost “leaf” in collapsed 

DAG
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Definition

x is an exit from v (from v’s subtree) if
n x is not a descendant of v, but
n x is the head of a (cross- or back-) edge 

from a descendant of v (or v itself)

n Any non-root vertex v has an exit

v
x

v
x
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Finding Other Components

n Key idea: No exit from
n 1st SCC
n 2nd SCC, except maybe to 1st

n 3rd SCC, except maybe to 1st and/or 2nd

n ...
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SCC Algorithm

SCC(v)
dfsnum[v] ← dfscounter++;
small[v] ← dfsnum[v]
push(v)
for all edges (v,w)

if dfsnum[w] = -1 then 
SCC(w)
small[v] ← min(small[v], small[w]) // tree edge

else if dfsnum[w] < dfsnum[v] and scc[w] = 0 then 
small[v] ← min(small[v], dfsnum[w]) // cross- or back-edge

if dfsnum[v ] = small[v] then       // v is root of new scc
sccnum←sccnum+1;
repeat

w = pop(); scc[w] = sccnum; // mark SCC members
until w=v

scc[v] = component #


