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CSE 417:  Algorithms and 
Computational 
Complexity

Graphs & Graph Algorithms I

Autumn 2002
Paul Beame
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Undirected Graph   G = (V,E)
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Directed Graph G = (V,E)
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Representing Graph  G=(V,E)
n vertices,  m edges

n Vertex set V={v1,...,vn}
n Adjacency Matrix   A

n A[i,j]=1 iff (vi,vj) ∈ E
n Space is n2 bits

n Advantages: 
n O(1) test for presence or absence of edges.
n compact in packed binary form for large m

n Disadvantages: 
n inefficient for sparse graphs
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Representing Graph  G=(V,E)
n vertices,  m edges

n Adjacency List:
n O(n+m) words
n O(log n) bits each

n Advantages:
n Compact for sparse graphs
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Representing Graph  G=(V,E)
n vertices,  m edges

n Adjacency List:
n O(n+m) words
n O(log n) bits each

n Back- and cross pointers more work to build, but 
allow easier traversal and deletion of edges
n usually assume this format
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Graph Traversal

n Learn the basic structure of a graph
n Walk from a fixed starting vertex v to 

find all vertices reachable from v

n Three states of vertices
n undiscovered
n discovered
n fully-explored
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Breadth-First Search

n Completely explore the vertices in order 
of their distance from v

n Naturally implemented using a queue

9

BFS(v)

Global initialization: mark all vertices "undiscovered"
BFS(v) 

mark  v "discovered"
queue ← v
while queue not empty

u ← remove_first(queue)
for each edge {u,x}

if (x is “undiscovered”) 
mark x “discovered”
append x to queue

mark u “fully-explored”

Exercise: modify 
code to number 
vertices & compute 
level numbers
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BFS(v)
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BFS(v)
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Queue:
1  
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BFS(v)
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BFS(v)
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Queue:
3 4
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BFS(v)
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BFS(v)
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Queue:
5 6 7 8 9
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BFS(v)
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Queue:
8 9 10 11
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BFS(v)
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Queue:
10 11 12 13
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BFS(v)
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BFS analysis

n Each edge is explored once from each 
end-point (at most)

n Each vertex is discovered by following a 
different edge

n Total cost O(m) where m=# of edges
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Properties of BFS(v)

n BFS(v) visits x if and only if there is a path in G from 
v to x.

n Edges followed to undiscovered vertices define a 
tree
n "breadth first spanning tree" of G

n Level i in this tree

n those vertices u such that the shortest path in G
from the root v is of length i.

n On undirected graphs
n All non-tree edges join vertices on the same or 

adjacent levels
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Graph Search Application: 
Connected Components

n Want to answer questions of the 
form:
n Given: vertices u and v in G
n Is there a path from u to v?

n Idea: create array A such that                  
A[u] = smallest numbered vertex 

that is connected to u
n question reduces to whether A[u]=A[v]?

Q: Why 
not create 
an array 
Path[u,v]?
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Graph Search Application: 
Connected Components

n initial state: all v undiscovered
for v←1 to n do                                          

if state(v) != “fully-explored” then                                 
BFS(v): setting A[u] ←v for each u found 

(and marking u discovered/fully-explored)         
endif

endfor

n Total cost: O(n+m)
n each vertex an each edge is touched a constant 

number of times
n works also with Depth First Search
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Depth-First Search

n Follow the first path you find as far as 
you can go

n Back up to last unexplored edge when 
you reach a dead end, then go as far 
you can 

n Naturally implemented using recursive 
calls or a stack
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DFS(v)
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DFS(v)
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DFS(v)
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DFS(v)
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DFS(v)
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DFS(v)
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DFS(v)
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DFS(v)
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DFS(v)
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DFS(v)
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DFS(v)
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DFS(v)
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Properties of DFS(v)

n Like BFS(v):
n DFS(v) visits x if and only if there is a path in G

from v to x
n Edges into undiscovered vertices define a tree

n "depth first spanning tree" of G
n Unlike the BFS tree: 

n the DFS spanning tree isn't minimum depth
n its levels don't reflect min distance from the root
n non-tree edges never join vertices on the same or 

adjacent levels
n BUT…
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Non-tree edges

n All non-tree edges join a vertex and one 
of its descendents/ancestors in the DFS 
tree

n No cross edges!
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App lication : Articulation Points

n A node in an undirected graph is an 
articulation point iff removing it 
disconnects the graph

n articulation points represent 
vulnerabilities in a network – single 
points whose failure would split the 
network into 2 or more disconnected 
components



9

51

Ar ticulation Points from DFS

n Non-tree edges eliminate articulation points

n Root  node is articulation point ⇔ it has more 
than one child

n Leaf nodes are never articulation points

n Other nodes u are articulation points ⇔
n no non-tree edges going from the sub-tree rooted 

at a child of u to above u in the tree

52

Ar ticulation Points from DFS

n For each vertex v compute 
n Small(v)

n the smallest number of a node pointed at by 
any descendant of v in the DFS tree (including 
v itself)

n Can compute Small(v) for every v during DFS at 
minimal extra cost

n Non-tree, non-root node u is an articulation point ⇔
for some child v of u
n Small(v) = DFSnumber(u)
n Easy to check during DFS
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Ar ticulation Points
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Ar ticulation Points
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DFS # Small     Art
1 1
2 1         
3           1             Y
4 3 
5 3
6 3
7 3
8 1 Y
9

10 1             Y
11 10
12 10             Y
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