

Graph Traversal

- Learn the basic structure of a graph
- Walk from a fixed starting vertex v to find all vertices reachable from v
- Three states of vertices
- undiscovered
- discovered
- fully-explored

Properties of DFS(v)

- Like BFS(v):
- DFS(v) visits \mathbf{x} if and only if there is a path in G from v to x
- Edges into undiscovered vertices define a tree - "depth first spanning tree" of G
- Unlike the BFS tree:
- the DFS spanning tree isn't minimum depth
- its levels don't reflect min distance from the root
- non-tree edges never join vertices on the same or adjacent levels
- BUT...

Ap plication: Aticulation Points

- Non-tree edges eliminate articulation points
- Root node is articulation point \Leftrightarrow it has more than one child
- Leaf nodes are never articulation points
- Other nodes \mathbf{u} are articulation points \Leftrightarrow
- no non-tree edges going from the sub-tree rooted at a child of u to above u in the tree

At ticulation Points from DFS

- For each vertex v compute
- Small(v)
- the smallest number of a node pointed at by any descendant of \mathbf{v} in the DFS tree (including v itself)
- Can compute Small(v) for every v during DFS at minimal extra cost
- Non-tree, non-root node \mathbf{u} is an articulation point \Leftrightarrow for some child v of u
- Small(v) = DFSnumber(u)
- Easy to check during DFS

