

Master Divide and Conquer
Recurrence

$=$ If $T(n)=a \cdot T(n / b)+c \cdot n^{k}$ for $n>b$ then

- if $a>b^{k}$ then $T(n)$ is $\Theta\left(n^{10 g a}\right)$
- if $a<b^{k}$ then $T(n)$ is $\Theta\left(n^{k}\right)$
- if $a=b^{k}$ then $T(n)$ is $\Theta\left(n^{k} \log n\right)$
- Works even if it is $\lceil n / b\rceil$ instead of n / b.

Another Divide \&Conquer Example: Multiplying Faster

- On the first HW you analyzed our usual
- On real machines each "digit" is, e.g., 32 bits long but still get $\Theta\left(\mathbf{n}^{2}\right)$ running time with this algorithm when run on n -bit multiplication
- We can do better!
- We'll describe the basic ideas by multiplying polynomials rather than integers
- Advantage is we don't get confused by worrying about carries at first

Polynomial Multiplication

- Given:
- Degree $\mathrm{n}-1$ polynomials \mathbf{P} and \mathbf{Q}

$$
\begin{aligned}
& \Perp P=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n-2} x^{n-2}+a_{n-1} x^{n-1} \\
& \boxed{Q}=b_{0}+b_{1} x+b_{2} x^{2}+\ldots+b_{n-2} x^{n-2}+b_{n-1} x^{n-1}
\end{aligned}
$$

Compute:

- Degree 2n-2 Polynomial P Q
- $P Q=a_{0} b_{0}+\left(a_{0} b_{1}+a_{1} b_{0}\right) x+\left(a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}\right) x^{2}$

$$
+\ldots+\left(a_{n-2} b_{n-1}+a_{n-1} b_{n-2}\right) x^{2 n-3}+a_{n-1} b_{n-1} x^{2 n-2}
$$

- Obvious Algorithm:

- Compute all $\mathbf{a}_{\mathbf{i}} \mathbf{b}_{\mathrm{j}}$ and collect terms
- $\Theta\left(n^{2}\right)$ time

Naive Divide and Conquer

- Assume $\mathbf{n = 2 k}$
- $P=\left(a_{0}+a_{1} \quad x+a_{2} x^{2}+\ldots+a_{k-2} x^{k-2}+a_{k-1} x^{k-1}\right)+$ $\left(a_{k}+a_{k+1} x+\quad \ldots+a_{n-2} x^{k-2}+a_{n-1} x^{k-1}\right) x^{k}$ $=P_{0}+\mathbf{P}_{1} \mathbf{x}^{\mathrm{k}}$ where \mathbf{P}_{0} and \mathbf{P}_{1} are degree $\mathrm{k}-1$ polynomials
- Similarly $\mathrm{Q}=\mathrm{Q}_{0}+\mathrm{Q}_{1} \mathrm{x}^{\mathrm{k}}$
- $P Q=\left(P_{0}+P_{1} x^{k}\right)\left(Q_{0}+Q_{1} x^{k}\right)$

$$
=P_{0} Q_{0}+\left(P_{1} Q_{0}+P_{0} Q_{1}\right) x^{k}+P_{1} Q_{1} x^{2 k}
$$

- 4 sub-problems of size $\mathbf{k}=\mathbf{n} / 2$ plus linear combining
- $T(n)=4 T(n / 2)+c n \quad$ Solution $T(n)=\Theta\left(n^{2}\right)$

Karatsuba's Algorithm

- A better way to compute the terms
- Compute
- $A \leftarrow P_{0} Q_{0}$
lyMul(P, Q):
$/ / \mathbf{P}, \mathbf{Q}$ are length $\mathbf{n}=\mathbf{2 k}$ vectors, with $\mathbf{P}[\mathbf{i}], \mathbf{Q}[\mathbf{i}]$ being
// the coefficient of $\mathbf{x}^{\mathbf{i}}$ in polynomials \mathbf{P}, \mathbf{Q} respectively.
// Let Pzero be elements 0...k-1 of P; Pone be elements $\mathbf{k} . . \mathbf{n - 1}$
// Qzero, Qone : similar
$\mathbf{A} \leftarrow$ PolyMul (Pzero, Qzero); $\quad / /$ result is a $(\mathbf{2} \mathbf{k}-\mathbf{1})$-vector
$-C \leftarrow\left(P_{0}+P_{1}\right)\left(Q_{0}+Q_{1}\right)=P_{0} Q_{0}+P_{1} Q_{0}+P_{0} Q_{1}+P_{1} Q_{1}$
- Then
- $P_{0} Q_{1}+P_{1} Q_{0}=C-A-B$
- So $P Q=A+(C-A-B) x^{k}+B x^{2 k}$
- 3 sub-problems of size $n / 2$ plus $O(n)$ work
- $T(n)=3 T(n / 2)+c n$
- $T(n)=O\left(n^{\alpha}\right)$ where $\alpha=\log _{2} 3=1.59 \ldots$
$\mathrm{B} \leftarrow$ PolyMul(Pone, Qone); // ditto
Psum \leftarrow Pzero + Pone; $\quad / /$ add corresponding elements Osum \leftarrow Ozero + Qone C $\leftarrow \operatorname{polyMul(Psum,~Qsum);~}$ I/ ditto
Mid $\leftarrow \mathbf{C}-\mathbf{A}-\mathrm{B}$;
// another ($\mathbf{2 k} \mathbf{k} \mathbf{1}$)-vector
// subtract corresponding elements
Return (\mathbf{R});

Hints towards FFT: Interpolation		
	\bullet	

Hints towards FFT:
Interpolation

Karatsuba's algorithm and evaluation and interpolation

- Strassen gave a way of doing 2×2 matrix multiplies with fewer multiplications
- Karatsuba's algorithm can be thought of as a way of multiplying degree 1 polynomials (which have 2 coefficients) using fewer multiplications
- $P Q=\left(P_{0}+P_{1} z\right)\left(Q_{0}+Q_{1} z\right)$
$=P_{0} Q_{0}+\left(P_{1} Q_{0}+P_{0} Q_{1}\right) z+P_{1} Q_{1} z^{2}$
- Evaluate at 0,1,-1 (Could also use other points) - $\mathrm{A}=\mathrm{P}(\mathbf{0}) \mathrm{Q}(\mathbf{0})=\mathrm{P}_{0} \mathrm{Q}_{0}$
- $C=P(\mathbf{1}) \mathbf{Q}(\mathbf{1})=\left(P_{0}+P_{1}\right)\left(Q_{0}+Q_{1}\right)$
- $\mathrm{D}=\mathrm{P}(-1) \mathrm{Q}(-1)=\left(\mathrm{P}_{0}-\mathrm{P}_{1}\right)\left(\mathrm{Q}_{0}-\mathrm{Q}_{1}\right)$
- Interpolating, Karatsuba's Mid=(C-D)/2 and B=(C+D)/2-A

Fun facts about $\omega=\mathrm{e}^{2 \pi i / n}$ for even n

- $\omega^{n}=1$
- $\omega^{n / 2}=-1$
- $\omega^{n / 2+k}=-\omega^{k}$ for all values of \mathbf{k}
- $\omega^{2}=\mathrm{e}^{2 \pi i / m}$ where $\mathrm{m}=\mathrm{n} / 2$
- $\omega^{k}=\cos (2 k \pi / \mathrm{n})+i \sin (2 k \pi / \mathrm{n})$ so can compute with powers of ω

Hints towards FFT: Evaluation at Special Points

- Evaluation of polynomial at 1 point takes $\mathbf{O}(\mathbf{n})$ - So $2 n$ points (naively) takes $\mathbf{O}\left(\mathrm{n}^{2}\right)$-no savings
- Key trick:
- use carefully chosen points where there's some sharing of work for several points, namely various powers of $\omega=e^{2 \pi i / n}, i=\sqrt{-1}$
- Plus more Divide \& Conquer.
- Result:
- both evaluation and interpolation in $\mathbf{O}(\mathbf{n} \log \mathrm{n})$ time
Fun facts about $\omega=e^{2 \pi i / n}$ for even n
$=\omega^{n}=1$
$=\omega^{n / 2}=-1$
$=\omega^{n / 2+k}=-\omega^{k}$ for all values of k
$=\omega^{2}=e^{2 \pi i / m}$ where $m=n / 2$
$=\omega^{k}=\cos (2 k \pi / n)+i \sin (2 k \pi / n)$ so can compute
with powers of ω

> - $P(\omega)=a_{0}+a_{1} \omega+a_{2} \omega^{2}+a_{3} \omega^{3}+a_{4} \omega^{4}+\ldots+a_{n-1} \omega^{n-1}$
> $=a_{0}+a_{2} \omega^{2}+a_{4} \omega^{4}+\ldots+a_{n-2} \omega^{n-2}$
> $+a_{1} \omega+a_{3} \omega^{3}+a_{5} \omega^{5}+\ldots+a_{n-1} \omega^{n-1}$
> $=P_{\text {even }}\left(\omega^{2}\right)+\omega P_{\text {odd }}\left(\omega^{2}\right)$
> - $P(-\omega)=a_{0}-a_{1} \omega+a_{2} \omega^{2}-a_{3} \omega^{3}+a_{4} \omega^{4}-\ldots \quad-a_{n-1} \omega^{n-1}$
> $=a_{0}+a_{2} \omega^{2}+a_{4} \omega^{4}+\ldots+a_{n-2} \omega^{n-2}$
> $-\left(a_{1} \omega+a_{3} \omega^{3}+a_{5} \omega^{5}+\ldots+a_{n-1} \omega^{n-1}\right)$
> $=\mathbf{P}_{\text {even }}\left(\omega^{2}\right)-\omega \mathbf{P}_{\text {odd }}\left(\omega^{2}\right)$
> where $P_{\text {even }}(x)=a_{0}+a_{2} x+a_{4} x^{2}+\ldots+a_{n-2} x^{n / 2-1}$
> and $P_{\text {odd }}(x)=a_{1}+a_{3} x+a_{5} x^{2}+\ldots+a_{n-1} x^{n / 2-1}$

The recursive idea for n a power of 2

- Also
- $P_{\text {even }}$ and $P_{\text {odd }}$ have degree $n / 2$ where
- $\mathbf{P}\left(\omega^{\mathrm{k}}\right)=\mathbf{P}_{\text {even }}\left(\omega^{2 \mathrm{k}}\right)+\omega^{\mathrm{k}} \mathrm{P}_{\text {odd }}\left(\omega^{2 \mathrm{k}}\right)$
- $\mathbf{P}\left(-\omega^{\mathbf{k}}\right)=\mathbf{P}_{\text {even }}\left(\omega^{2 k}\right)-\omega^{\mathbf{k}} \mathbf{P}_{\text {odd }}\left(\omega^{2 k}\right)$
- Recursive Algorithm

$$
\omega^{2} \text { is } \mathrm{e}^{2 \pi i / m} \text { where } \mathrm{m}=\mathrm{n} / 2
$$

- Evaluate $P_{\text {even }}$ at $1, \omega^{2}, \omega^{4}, \ldots, \omega^{n-2} \quad \begin{aligned} & \text { so problems are of same } \\ & \text { type but smaller size }\end{aligned}$
- Evaluate $P_{\text {odd }}$ at $1, \omega^{2}, \omega^{4}, \ldots, \omega^{n-2}$ type but smaller size
- Combine to compute P at $1, \omega, \omega^{2}, \ldots, \omega^{n 2-1}$
- Combine to compute P at $-1,-\omega,-\omega^{2}, \ldots,-\omega^{n / 2-1}$ (i.e. at $\omega^{\mathrm{n} / 2}, \omega^{\mathrm{n} / 2+1}, \omega^{\mathrm{n} / 2+2}, \ldots, \omega^{\mathrm{n}-1}$)

Analysis and more

- Run-time
- $\mathbf{T}(\mathbf{n})=\mathbf{2 \cdot T}(\mathbf{n} / \mathbf{2})+\mathbf{c n}$ so $\mathbf{T}(n)=\mathbf{O}(n \log n)$
- So much for evaluation ... what about interpolation?
- Given
$-r_{0}=R(1), r_{1}=R(\omega), r_{2}=R\left(\omega^{2}\right), \ldots, r_{n-1}=R\left(\omega^{n-1}\right)$
- Compute

$$
=C_{0}, C_{1}, \ldots, c_{n-1} \text { s.t. } R(x)=c_{0}+c_{1} x+\ldots+c_{n-1} x^{n-1}
$$

Interpolation \approx Evaluation: strange but true

- Weird fact:
- If we define a new polynomial
$\mathbf{S}(x)=r_{0}+r_{1} x+r_{2} x^{2}+\ldots+r_{n-1} x^{n-1}$ where $r_{0}, r_{1}, \ldots, r_{n-1}$ are the evaluations of \mathbf{R} at $1, \omega, \ldots, \omega^{n-1}$
- Then $\mathbf{c}_{\mathbf{k}}=\mathbf{S}\left(\omega^{-k}\right) / \mathbf{n}$ for $\mathbf{k}=\mathbf{0}, \ldots, \mathbf{n - 1}$
- So...
- evaluate S at $1, \omega^{-1}, \omega^{-2}, \ldots, \omega^{-(n-1)}$ then divide each answer by \mathbf{n} to get the $\mathbf{c}_{0}, \ldots, \mathbf{c}_{\mathbf{n}-1}$
- ω^{-1} behaves just like ω did so the same $\mathbf{O}(\mathbf{n} \log n)$ evaluation algorithm applies !

Why this is called the discrete Fourier transform

- Real Fourier series
- Given a real valued function f defined on $[0,2 \pi]$
the Fourier series for f is given by $f(x)=a_{0}+a_{1} \cos (x)+a_{2} \cos (2 x)+\ldots+a_{m} \cos (m x)+\ldots$ where

$$
a_{m}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) \cos (m x) d x
$$

- is the component of f of frequency m
- In signal processing and data compression one ignores all but the components with large a_{m} and there aren't many since

	Why this is called the discrete Fourier transform		
- Real Fourier series			
- Given a real valued function f defined on $[0,2 \pi]$			
the Fourier series for f is given by			
$f(x)=a_{0}+a_{1} \cos (x)+a_{2} \cos (2 x)+\ldots+a_{m} \cos (m x)+\ldots$			
where			
$a_{m}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) \cos (m x) d x$		\quad	- is the component of f of frequency m
:---			
- In signal processing and data compression one			
ignores all but the components with large a_{m} and			
there aren't many since			

Divide and Conquer Summary

- Powerful technique, when applicable
- Divide large problem into a few smaller problems of the same type
- Choosing sub-problems of roughly equal size is usually critical
- Examples:
- Merge sort, quicksort (sort of), polynomial multiplication, FFT, Strassen's matrix multiplication algorithm, powering, binary search, root finding by bisection, ...

