CSE 417: Algorithms and
Computational Complexity

Winter 2001
Lecture 9
Instructor: Paul Beame

Undirected Graphs

£
&

Directed Graphs

AN
Sz
2~

Representing Graph G=(V,E)
n vertices, medges

Vertex set V={v,,...v, }

Adjacency Matrix A
A[ijI=1 iff (vi,v)E
Space is n? bits

Advantages:
O(1) test for presence or absence of edges.
compact in packed binary form for large m
Disadvantages: inefficient for sparse graphs .

Representing Graph G=(V,E)
n vertices, medges

Adjacency List:

O(n+m) words

mi

Advantages:
Compact for sparse graphs

Representing Graph G=(V,E)
n vertices, medges

Adjacency List:
O(n+m) words
O(log n) bits each

mi

Back pointers and cross pointers allow
easier traversal and deletion of edges

usually assume this format




Graph Traversal

Learn the basic structure of a graph

Walk from a fixed starting vertex v to find
all vertices reachable from v

Three states of vertices
undiscovered
discovered
completely-explored

Breadth-First Search

Completely explore the vertices in order of
their distance from v

Naturally implemented using a queue

BFS(V)




BFS analysis

Each edge is explored once from each
end-point (at most)

Each vertex is discovered by following a
different edge

Total cost O(m) where m=# of edges

Graph Search Application:
Connected Components

Want data structure that allows one to
answer questions of the form:

given vertices u and v is there a path from u
to v?

Idea : create array A such that
A[u] = smallest numbered vertex that is
connected to u

question reduces to whether A[u]=A[v]?




Graph Search Application:
Connected Components

forv=1to ndo
if state(v)!=fully-explored then
state(v) — discovered
BFS(v): setting Alu] v for each u found
endif
endfor

Total cost: O(n+m)
each vertex an each edge is touched a constant
number of times
works also with DFS

BFS Application: Shortest Paths

Tree gives shortest
paths from start vertex

i can label by distances from start
20

Depth-First Search

Follow the first path you find as far as you
can go, recording all the vertices you will
need to explore further as you go.

Naturally implemented using recursive
calls or a stack

DFS(v)

DFS(v)
O
O S—
7o e ©
@ .
DFS(v)




DFS(v)

DFS(v)

DFS(v)

DFS(v)

DFS(v)

DFS(v)




DFS(v)

DFS(v)

DFS(v)

DFS(v)

DFS(v)




Non-tree edges

All non-tree edges join a vertex and its
descendent in the DFS tree

No cross edges

41

Application: Articulation Points

A node in an undirected graph is an
articulation point iff removing it
disconnects the graph

articulation points represent vulnerabilities
in a network




Articulation Points

43

Articulation Points from DFS

Every interior vertex of a tree is an articulation
point
Non-tree edges eliminate articulation points

Root nodes are articulation points iff they have
more than one child

no non-tree edges going
non-leaf, non-root from sub-tree below some
node u is an < | child of u to above u in the
articulation point tree

DFS Application:
Articulation Points
root has one child articulation points & reasons
i " tched 3 sub-tree at 4
qthhn— retg € %ﬁs mall‘c e t 8 sub-tree at 9
with vertices they eliminate 10 sub-tree at 11

12 sub-tree at 13

@

éer:lves are not articulation points l
@ e .




