CSE 417: Algorithms and Computational Complexity

Winter 2001
Lecture 9
Instructor: Paul Beame

Representing Graph G=(V,E)
n vertices, medges
Adjacency List:
I O(n+m) words
| $\mathrm{O}(\log n)$ bits each

Advantages:
I Compact for sparse graphs

Undirected Graphs

Representing Graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ n vertices, medges

|| Vertex set $\mathrm{V}=\left\{\mathrm{v}_{1}, \ldots \mathrm{v}_{\mathrm{n}}\right\}$

- Adjacency Matrix A
$\| A[i, j]=1$ iff $\left(v_{i}, v_{j}\right) \in E$
$\|$ Space is n^{2} bits
Advantages:
I O(1) test for presence or absence of edges.
\| compact in packed binary form for large m
Disadvantages: inefficient for sparse graphs

Representing Graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ n vertices, medges

Adjacency List:
| $\mathrm{O}(\mathrm{n}+\mathrm{m})$ words
\| $O(\log n)$ bits each

Back pointers and cross pointers allow easier traversal and deletion of edges II usually assume this format

Breadth-First Search

- Completely explore the vertices in order of their distance from v

Naturally implemented using a queue

BFS analysis

Each edge is explored once from each end-point (at most)

Each vertex is discovered by following a different edge

Total cost $O(m)$ where $m=\#$ of edges

Graph Search Application: Connected Components

Want data structure that allows one to answer questions of the form:
\| given vertices u and v is there a path from u to v?

II Idea : create array A such that
$A[u]=$ smallest numbered vertex that is connected to u
\| question reduces to whether $\mathrm{A}[\mathrm{u}]=\mathrm{A}[\mathrm{v}]$?

Graph Search Application: Connected Components

```
|for v=1 to n do
        if state(v)!=fully-explored then
                state(v)\leftarrowdiscovered
            BFS(v): setting A[u]}\leftarrowv\mathrm{ for each u found
        endif
    endfor
| Total cost: O(n+m)
    | each vertex an each edge is touched a constant
        number of times
    works also with DFS
```


Application: Articulation Points

- A node in an undirected graph is an articulation point iff removing it disconnects the graph

II articulation points represent vulnerabilities in a network

DFS Application:
 Articulation Points

