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Directed Graphs
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Representing Graph  G=(V,E)
n vertices,  medges

❚ Vertex set V={v1,...vn}
❚ Adjacency Matrix   A

❙ A[i,j]=1 iff (vi,vj)∈E
❙ Space is n2 bits

❚ Advantages:
❙ O(1) test for presence or absence of edges.
❙ compact in packed binary form for large m

❚ Disadvantages: inefficient for sparse graphs
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Representing Graph  G=(V,E)
n vertices,  medges

❚ Adjacency List:
❙ O(n+m) words
❙ O(log n) bits each

❚ Advantages:
❙ Compact for sparse graphs
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Representing Graph  G=(V,E)
n vertices,  medges

❚ Adjacency List:
❙ O(n+m) words
❙ O(log n) bits each

❚ Back pointers and cross pointers allow
easier traversal and deletion of edges
❙ usually assume this format
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Graph Traversal

❚ Learn the basic structure of a graph
❚ Walk from a fixed starting vertex v to find

all vertices reachable from v

❚ Three states of vertices
❙ undiscovered
❙ discovered
❙ completely-explored
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Breadth-First Search

❚ Completely explore the vertices in order of
their distance from v

❚ Naturally implemented using a queue
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BFS(v)
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BFS analysis

❚ Each edge is explored once from each
end-point (at most)

❚ Each vertex is discovered by following a
different edge

❚ Total cost O(m)  where m=# of edges
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Graph Search Application:
Connected Components

❚ Want data structure that allows one to
answer questions of the form:
❙ given vertices u and v is there a path from u

to v?

❚ Idea : create array A such that
A[u] = smallest numbered vertex that is 

 connected to u
❚ question reduces to whether A[u]=A[v]?
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Graph Search Application:
Connected Components

❚ for v=1 to n do                                          
if state(v)!=fully-explored then

state(v)←discovered
BFS(v): setting A[u] ←v for each u found

endif
endfor

❚ Total cost: O(n+m)
❙ each vertex an each edge is touched a constant

number of times

❙ works also with DFS
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BFS Application: Shortest Paths
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Depth-First Search

❚ Follow the first path you find as far as you
can go, recording all the vertices you will
need to explore further as you go.

❚ Naturally implemented using recursive
calls or a stack

22

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13

23

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13

24

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13



5

25

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13

26

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13

27

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13

28

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13

29

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13

30

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13



6

31

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13

32

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13

33

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13

34

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13

35

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13

36

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13



7

37

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13

38

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13

39

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13

40

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13

41

Non-tree edges

❚ All non-tree edges join a vertex and its
descendent in the DFS tree

❚ No cross edges
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Application: Articulation Points

❚ A node in an undirected graph is an
articulation point iff removing it
disconnects the graph

❚ articulation points represent vulnerabilities
in a network
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Articulation Points
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Articulation Points from DFS

❚ Every interior vertex of a tree is an articulation
point
❙ Non-tree edges eliminate articulation points

❚ Root  nodes are articulation points iff they have
more than one child

no non-tree edges going 
from sub-tree below some 
child of u to above u in the 
tree

non-leaf, non-root
node u is an
articulation point

⇔
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DFS Application:
Articulation Points
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