
1

1

&6(�������$OJRULWKPV�DQG

&RPSXWDWLRQDO�&RPSOH[LW\

Winter 2001
Lecture 9

Instructor: Paul Beame

2

Undirected Graphs
1

2
10

9

8

3

4

5

6

7

11
12

13

3

Directed Graphs

❚
1

2
10

9

8

3

4

5

6

7

11
12

13

4

Representing Graph G=(V,E)
n vertices, medges

❚ Vertex set V={v1,...vn}
❚ Adjacency Matrix A

❙ A[i,j]=1 iff (vi,vj)∈E
❙ Space is n2 bits

❚ Advantages:
❙ O(1) test for presence or absence of edges.
❙ compact in packed binary form for large m

❚ Disadvantages: inefficient for sparse graphs

5

Representing Graph G=(V,E)
n vertices, medges

❚ Adjacency List:
❙ O(n+m) words
❙ O(log n) bits each

❚ Advantages:
❙ Compact for sparse graphs

v1

v2

v3

v1

vn

2 4 7

1 3

52

7

6

6

Representing Graph G=(V,E)
n vertices, medges

❚ Adjacency List:
❙ O(n+m) words
❙ O(log n) bits each

❚ Back pointers and cross pointers allow
easier traversal and deletion of edges
❙ usually assume this format

v1

v2

v3

v1

vn

2 4 7

1 3

52

7

6

2

7

Graph Traversal

❚ Learn the basic structure of a graph
❚ Walk from a fixed starting vertex v to find

all vertices reachable from v

❚ Three states of vertices
❙ undiscovered
❙ discovered
❙ completely-explored

8

Breadth-First Search

❚ Completely explore the vertices in order of
their distance from v

❚ Naturally implemented using a queue

9

BFS(v)
1

2
3

10

5

4

9

12

8

13

6
7

11

10

BFS(v)
1

2
3

10

5

4

9

12

8

13

6
7

11

11

BFS(v)
1

2
3

10

5

4

9

12

8

13

6
7

11

12

BFS(v)
1

2
3

10

5

4

9

12

8

13

6
7

11

3

13

BFS(v)
1

2
3

10

5

4

9

12

8

13

6
7

11

14

BFS(v)
1

2
3

10

5

4

9

12

8

13

6
7

11

15

BFS(v)
1

2
3

10

5

4

9

12

8

13

6
7

11

16

BFS(v)
1

2
3

10

5

4

9

12

8

13

6
7

11

17

BFS analysis

❚ Each edge is explored once from each
end-point (at most)

❚ Each vertex is discovered by following a
different edge

❚ Total cost O(m) where m=# of edges

18

Graph Search Application:
Connected Components

❚ Want data structure that allows one to
answer questions of the form:
❙ given vertices u and v is there a path from u

to v?

❚ Idea : create array A such that
A[u] = smallest numbered vertex that is

 connected to u
❚ question reduces to whether A[u]=A[v]?

4

19

Graph Search Application:
Connected Components

❚ for v=1 to n do
if state(v)!=fully-explored then

state(v)←discovered
BFS(v): setting A[u] ←v for each u found

endif
endfor

❚ Total cost: O(n+m)
❙ each vertex an each edge is touched a constant

number of times

❙ works also with DFS
20

BFS Application: Shortest Paths
1

2
3

10

5

4

9

12

8

13

6
7

11

0

1

2

3

4
can label by distances from start

Tree gives shortest
paths from start vertex

21

Depth-First Search

❚ Follow the first path you find as far as you
can go, recording all the vertices you will
need to explore further as you go.

❚ Naturally implemented using recursive
calls or a stack

22

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13

23

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13

24

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13

5

25

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13

26

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13

27

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13

28

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13

29

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13

30

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13

6

31

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13

32

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13

33

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13

34

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13

35

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13

36

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13

7

37

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13

38

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13

39

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13

40

DFS(v)
1

2
10

9

8

3

7

6

4

5

11
12

13

41

Non-tree edges

❚ All non-tree edges join a vertex and its
descendent in the DFS tree

❚ No cross edges

42

Application: Articulation Points

❚ A node in an undirected graph is an
articulation point iff removing it
disconnects the graph

❚ articulation points represent vulnerabilities
in a network

8

43

Articulation Points
1

2
10

9

8

3

7

6

4

5

11
12

13

44

Articulation Points from DFS

❚ Every interior vertex of a tree is an articulation
point
❙ Non-tree edges eliminate articulation points

❚ Root nodes are articulation points iff they have
more than one child

no non-tree edges going
from sub-tree below some
child of u to above u in the
tree

non-leaf, non-root
node u is an
articulation point

⇔

45

DFS Application:
Articulation Points

1

2

9

8

3

7
6

4

5

10

11
12

13
leaves are not articulation points

articulation points & reasons
3 sub-tree at 4
8 sub-tree at 9

10 sub-tree at 11
12 sub-tree at 13

non-tree edges matched
with vertices they eliminate

root has one child

