CSE 417: Algorithms and Computational Complexity

Winter 2001
Lecture 7
Instructor: Paul Beame
TA: Gidon Shavit

Three Steps to Dynamic Programming

- Formulate the answer as a recurrence relation or recursive algorithm

II Show that number of different parameter values in the recursive algorithm is bounded by a small polynomial

- Specify an order of evaluation for the recurrence so that already have the partial results ready when you need them.

Sequence Comparison: Edit Distance

I Given:

I Two strings of characters $A=a_{1} a_{2} \ldots a_{n}$ and $B=b_{1} b_{2} \ldots b_{m}$
Find:
I The minimum number of edit steps needed to transform A into B where an edit can be:
\| insert a single character
I delete a single character
| substitute one character by another

Computing $\mathrm{D}(\mathrm{n}, \mathrm{m})$

Imagine how best sequence handles the last characters a_{n} and b_{m}
If best sequence of operations
1 deletes a_{n} then $D(n, m)=D(n-1, m)+1$
1 inserts b_{m} then $D(n, m)=D(n, m-1)+1$
If replaces a_{n} by b_{m} then $D(n, m)=D(n-1, m-1)+1$
I matches a_{n} and b_{m} then $\mathrm{D}(\mathrm{n}, \mathrm{m})=\mathrm{D}(\mathrm{n}-1, \mathrm{~m}-1)$

Recursive Solution

II Sub-problems: Edit distance problems for all prefixes of A and B that don't include all of both A and B

II Let $\mathrm{D}(\mathrm{i}, \mathrm{j})$ be the number of edits required to transform $a_{1} a_{2} \ldots a_{i}$ into $b_{1} b_{2} \ldots b_{j}$
| Clearly $\mathrm{D}(0,0)=0$

Recursive algorithm $\mathrm{D}(\mathrm{n}, \mathrm{m})$

```
if n=0 then
    return (m)
elseif m=0 then
        return(n)
l else
    if }\mp@subsup{a}{n}{}=\mp@subsup{b}{m}{}\mathrm{ then
        replace-cost=0
    else
        replace-cost=1
    endif
    return(min{ D(n-1,m) + 1,
                            D(n, m-1) +1,
                            D(n-1,m-1) + replace-cost})
```

for j = 0 to m; D (0,j) \leftarrowj; endfor
for j = 0 to m; D (0,j) \leftarrowj; endfor
for i=1 to n; D(i,0)\leftarrowi; endfor
for i=1 to n; D(i,0)\leftarrowi; endfor
for i=1 to n
for i=1 to n
for j=1 to m
for j=1 to m
if }\mp@subsup{a}{i}{}=\mp@subsup{b}{j}{}\mathrm{ then
if }\mp@subsup{a}{i}{}=\mp@subsup{b}{j}{}\mathrm{ then
- replace-cost }\leftarrow
- replace-cost }\leftarrow
else
else
replace-cost }\leftarrow
replace-cost }\leftarrow
endif
endif
D(i,j)}\leftarrow\operatorname{min}{D(i-1,j)+1
D(i,j)}\leftarrow\operatorname{min}{D(i-1,j)+1
D(i, j-1) +1,
D(i, j-1) +1,
D(i-1,j-1) + replace-cost}
D(i-1,j-1) + replace-cost}
l endfor
l endfor
endfor
endfor

Example run with
 AGACATTG and GAGTTA

Example run with AGACATTG and GAGTTA

Example run with AGACATTG and GAGTTA

	A		G	A	C	A	T	T	G
	0	1	2	3	4	5	6	7	8
\square	1	1	1	2	3	4	5	6	7
>	2	1	2	1	2	3	4	5	6
Q	3	2	1	2	2	3	4	5	5
-	4								
-	5								
>	6								

Example run with
AGACATTG and GAGTTA

Example run with

AGACATTG and GAGTTA

Example run with AGACATTG and GAGTTA

		A	G	A	C	A	T	T	T		G
	$0<1 \& 2 \& 3 \& 4 \& 5<6<7 \& 8$										
Q	-	1	1	$2=$	3	- 4	¢ 5	5	6		7
	2		<2	1	-2	- 3	< 4	$4-$	5		6
Q	3	2		<2	24	43	$3 \leqslant 4$	4	$\leqslant 5$		5
\rightarrow	4	3	2		$\div 3$	3	3 3		4		5
\rightarrow	尔	4	3	3	3	- 4	4	3	3	4	4
>	6	5	4	34	4		$3<4$		4		4

Example run with
 AGACATTG and GAGTTA

Reading off the operations

Follow the sequence and use each color of arrow to tell you what operation was performed.

Longest Increasing Subsequence

\| Given a sequence of integers $\mathrm{S}_{1}, \ldots, \mathrm{~S}_{\mathrm{n}}$ find a subsequence $\mathrm{s}_{\mathrm{i}_{1}}<\mathrm{S}_{\mathrm{i}_{2}}<\ldots<\mathrm{S}_{\mathrm{i}_{k}}$ with $\mathrm{i}_{1}<\ldots<\mathrm{i}_{k}$ so that k is as large as possible.

II e.g. Given 9,5,2,8,7,3,1,6,4 as input,
| possible increasing subsequence is 5,7
| better is $2,3,6$ or $2,3,4$ (either or which would be a correct output to our problem)

Find recursive algorithm

Solve sub-problem on $\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{n}-1}$ and then try to extend using s_{n}

Refined recursive idea (stronger notion of subproblem)

\| Suppose that we knew for each $i<n$ the longest increasing subsequence in $\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{n}}$ that ends in s_{i}.

Now to compute value for $i=n$ find
I s_{n} preceded by the maximum over all i<n such that $\mathrm{s}_{\mathrm{i}}<\mathrm{s}_{n}$ of the longest increasing subsequence ending in s_{i}

- First find the best length first rather than trying to actually compute the sequence itself.

Recurrence

|| Let L[j]=length of longest increasing subsequence in $\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{n}}$ that ends in s_{j}.

- $L[j]=1+\max \left\{L[i]: i<j\right.$ and $\left.s_{i}<s_{j}\right\}$
(where max of an empty set is 0)
\| Length of longest increasing subsequence: $1 \max \{[i]: 1 \leq i \leq n\}$

Computing the actual sequence

- For each j, we computed
$L[j]=1+\max \left\{L[i]: i<j\right.$ and $\left.s_{i}<s_{j}\right\}$ (where max of an empty set is 0)
- Also maintain P[j] the value of the i that achieved that max
| this will be the index of the predecessor of s_{i} in a longest increasing subsequence that ends in s_{j}
\| by following the $\mathrm{P}[\mathrm{j}$ values we can reconstruct the whole sequence in linear time.

Longest Increasing Subsequence Algorithm

```
| for j=1 to n do
    L[j]<1
        P[j]
        for i=1 to j-1 do
            if (\mp@subsup{s}{i}{}<\mp@subsup{\textrm{s}}{j}{}&&L[i]+1>L[j]) then
            P[j]}
            L[j]}\leftarrowL[i]+
        endfor
    endfor
```

\| Now find j such that $\mathrm{L}[\mathrm{j}]$ is largest and walk backwards
through $P[j]$ pointers to find the sequence

