CSE 417: Algorithms and
Computational Complexity

Winter 2001
Lecture 7
Instructor: Paul Beame
TA: Gidon Shavit

Three Steps to
Dynamic Programming

Formulate the answer as a recurrence relation
or recursive algorithm

Show that number of different parameter values
in the recursive algorithm is bounded by a small
polynomial

Specify an order of evaluation for the recurrence
so that already have the patrtial results ready
when you need them.

Sequence Comparison:
Edit Distance

Given:
Two strings of characters A=a, a, ... a, and
B=b, b, ... b,

Find:

The minimum number of edit steps needed to
transform A into B where an edit can be:

insert a single character
delete a single character
substitute one character by another

Recursive Solution

Sub-problems: Edit distance problems for
all prefixes of A and B that don’t include all
of both A and B

Let D(i,j) be the number of edits required

totransform a; a, ... & into b, b, ... b,

Clearly D(0,0)=0

Computing D(n,m)

Imagine how best sequence handles the
last characters a, and b,
If best sequence of operations
deletes a, then D(n,m)=D(n-1,m)+1
inserts b, then D(n,m)=D(n,m-1)+1
replaces a, by b, then D(n,m)=D(n-1,m-1)+1
matches a, and b,, then D(n,m)=D(n-1,m-1)

Recursive algorithm D(n,m)

if n=0 then
return (m)
elseif m=0 then
return(n)
else
if a,;=b,, then
replace-cost=0
else
replace-cost=1
endif
return(min{ D(n-1, m) + 1,
D(n, m-1) +1,
D(n-1, m-1) + replace-cost})

Dynamic programming

forj=0to m; D(0,j) « j; endfor
fori=1to n; D(i,0) — i; endfor
fori=1ton
forj=1tom
if a=b;then

replace-cost — 0
else
replace-cost — 1
endif
D(ij) « min{D(-1,) + 1,
D(, j-1) +1,
D(i-1, j-1) + replace-cost}
endfor
endfor

Example run with
AGACATTG and GAGTTA

AG A CA T T G

V1il19VvV 9

Example run with
AGACATTG and GAGTTA

AG A CA T T G
11213 1415161718
11112 |13|4|5]|6 |7

V1il19V 9
ola|a|w|nv|r|lo

Example run with
AGACATTG and GAGTTA

AG A CA T T G
11213 1415161718
11112 |13|4|5]|6 |7
1121

V1il19V 9
ola|s|w|nv|r|lo

Example run with
AGACATTG and GAGTTA

AG A CA T T G
11213 1415161718
11112 |13|4|5]|6 |7
112|123 |4([5]|6
2111212]|3|4]|5]|5

V119V 9
ola|s|w|nv|r|lo

Example run with
AGACATTG and GAGTTA

AG A CA T T G

0] 123 14|56]7 |8
(1| 1(1(2|3|4 (5|6 |7
>|(2]| 1(2|1]|]2]|3|4]|5]| 6
o3| 2|1|2|2[3]4[5]|5
-4 3[2|2]|3|3|3|4]5
| 5| 4(/3|3]|3|4|3|3] 4
>| 6| 5|43 |[4[3|4(4]4

Example run with
AGACATTG and GAGTTA

AG A CA T T G

0k i1d2d3d 4ds5464748
o1 1]1424 344454647
> 2] 142 [1%2434445456
ol3l 2[1¥2]24344%545
4[4[3]2[2k3[3]34445
< [8] 4]3[3[344[3][34d4
>|6]5[4]344]|344aa]4

Example run with
AGACATTG and GAGTTA

AG A CA T T G

0k id2d3d adsd64748
o1 1]1424 344454647
> 2] 1%2 1 ¥243444546
ol3l 2[1¥2]24344%545
4 3]2[2k3[3]34445
<[8] 4]3]3[344[3][34d4
>|6|5[4(3da[3dafala

Reading off the operations

Follow the sequence and use each color
of arrow to tell you what operation was
performed.

Longest Increasing
Subsequence

Given a sequence of integers S;,...,S,, find a
subsequence s, < s5; <...< §; with i;<...<i, so
that k is as large as possible.

e.g. Given 9,5,2,8,7,3,1,6,4 as input,
possible increasing subsequence is 5,7

better is 2,3,6 or 2,3,4 (either or which would be a
correct output to our problem)

Find recursive algorithm

Solve sub-problem on s,,...,s,; and then
try to extend using s,

Two cases:
S, is not used
answer is the same answer as on s,...,S, ;
s, is used

answer is s, preceded by the longest increasing
subsequence in s,...,s, ; that ends in a number
smaller than s

Refined recursive idea
(stronger notion of subproblem)

Suppose that we knew for each i<n the longest
increasing subsequence in s,,...,s, that ends in
Sj.
Now to compute value for i=n find

s, preceded by the maximum over all i<n such that
si<s, of the longest increasing subsequence ending
ins;
First find the best length first rather than trying to
actually compute the sequence itself.

Recurrence

Let L[j]=length of longest increasing
subsequence in s,,...,s, that ends in s;.

LjJ=1+max{L[i] : i<j and s<s}
(where max of an empty set is 0)

Length of longest increasing subsequence:
max{L[i]: 1<i<n}

Computing the actual sequence

For each j, we computed
L[jl=1+max{L[i] : i<j and si<s}
(where max of an empty set is 0)
Also maintain P[j] the value of the i that
achieved that max

this will be the index of the predecessor of s;in a
longest increasing subsequence that ends in s;

by following the P[j] values we can reconstruct the
whole sequence in linear time.

Longest Increasing
Subsequence Algorithm

forj=1tondo
L[j]-1
P[j] -0
fori=1toj-1do
if (si<sj & L[i]+1>L][j]) then
P[] <i
L[j] <L[i]+1
endfor
endfor

Now find j such that L[j] is largest and walk backwards

through P[j] pointers to find the sequence ”

