CSE 417: Algorithms and Computational Complexity

Winter 2001 Lecture 7 Instructor: Paul Beame TA: Gidon Shavit

Three Steps to Dynamic Programming

- Formulate the answer as a recurrence relation or recursive algorithm
- Show that number of different parameter values in the recursive algorithm is bounded by a small polynomial
- Specify an order of evaluation for the recurrence so that already have the partial results ready when you need them.

Sequence Comparison: Edit Distance

- Given:
 - I Two strings of characters $A=a_1 a_2 \dots a_n$ and $B=b_1 b_2 \dots b_m$
- Find:
 - I The minimum number of edit steps needed to transform A into B where an edit can be:

3

- I insert a single character
- I delete a single character
- I substitute one character by another

Recursive Solution Sub-problems: Edit distance problems for all prefixes of A and B that don't include all of both A and B Let D(i,j) be the number of edits required to transform a₁ a₂ ... a_i into b₁ b₂ ... b_j

Clearly D(0,0)=0

Computing D(n,m)

- Imagine how best sequence handles the last characters a_n and b_m
- If best sequence of operations
 - deletes a_n then D(n,m)=D(n-1,m)+1
 - I inserts b_m then D(n,m)=D(n,m-1)+1
 - I replaces a_n by b_m then D(n,m)=D(n-1,m-1)+1
 - I matches a_n and b_m then D(n,m)=D(n-1,m-1)

Decention of the state of the state

Example run with AGACATTG and GAGTTA											
		A	G	A	с	A	т	т	G		
	0	1	2	3	4	5	6	7	8		
G	1	1	1	2	3	4	5	6	7		
A	2	1	2	1	2	3	4	5	6		
G	3	2	1	2	2	3	4	5	5		
т	4	3	2	2	3	3	3	4	5		
т	5	4	3	3	3	4	3	3	4		
A	6	5	4	3	4	3	4	4	4		
										12	

Example run with AGACATTG and GAGTTA								
	AGACATTG							
	0 + 1 2 + 3 + 4 + 5 + 6 + 7 + 8							
G	1 1 4 2 4 3 4 4 5 4 6 4 7							
A	2 1€2 1 € 2€ 3€ 4€ 5€ 6							
ଦ	3 2 1 €2 2€ 3€ 4 €5€ 5							
T	4 3 2 2 4 3 3 3 4 4 5							
Т	5 4 3 3 3 4 3 3 4 4 3 3 4 4							
A	6 5 4 3 4 3 4 4 4 4							
		13						

Example run with AGACATTG and GAGTTA										
		A	G	A	с	A	т	т	G	
	Q.	÷ 1 <u>≼</u>	- 2 <	- 3 <	4	- 5 <	- 6 <	- 7 <	- 8	
ଦ	ΓĴ Ι	1	1 <	2 <	- 3<	- 4 <	- 5 <	- 6 <	- 7	
А	Â	1	2	1	÷ 2⋖	- 3<	- 4 <	- 5 <	- 6	
ନ	3	2	1	÷ 2	2<	- 3<	- 4 -	÷5 <	- 5	
H	4	μ.	2	2	- 3	3	3 <	4 <	- 5	
н	5	4	3	3	3<	- 4	3	3 <	- 4	
⊳	6	5	4	3 <	- 4	3<	- 4	4	4	
										14

Recurrence

- Let L[j]=length of longest increasing subsequence in s₁,...,s_n that ends in s_j.
- L[j]=1+max{L[i] : i<j and s_i<s_j} (where max of an empty set is 0)
- $\label{eq:logistical} \begin{array}{l} \mbox{Length of longest increasing subsequence:} \\ \mbox{I} \mbox{max}\{L[i]: 1 \le i \le n\} \end{array}$

19

