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Three Steps to 
Dynamic Programming

❚ Formulate the answer as a recurrence relation
or recursive algorithm

❚ Show that number of different parameter values
in the recursive algorithm is bounded by a small
polynomial

❚ Specify an order of evaluation for the recurrence
so that already have the partial results ready
when you need them.
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Sequence Comparison:
Edit Distance

❚ Given:
❙ Two strings of characters A=a1 a2 ... an and

B=b1 b2 ... bm

❚ Find:
❙ The minimum number of edit steps needed to

transform A into B where an edit can be:
❙ insert a single character
❙ delete a single character
❙ substitute one character by another
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Recursive Solution

❚ Sub-problems: Edit distance problems for
all prefixes of A and B that don’t include all
of both A and B

❚ Let D(i,j) be the number of edits required
to transform a1 a2 ... ai into b1 b2 ... bj

❚ Clearly D(0,0)=0
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Computing D(n,m)

❚ Imagine how best sequence handles the
last characters an and bm

❚ If best sequence of operations
❙ deletes an then D(n,m)=D(n-1,m)+1
❙ inserts bm then D(n,m)=D(n,m-1)+1
❙ replaces an by bm then D(n,m)=D(n-1,m-1)+1
❙ matches an and bm then D(n,m)=D(n-1,m-1)
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Recursive algorithm D(n,m)

❚ if  n=0  then
❙ return (m)

❚ elseif  m=0  then
❙ return(n)

❚ else
❙ if  an=bm  then

❘ replace-cost=0

❙ else
❘ replace-cost=1

❙ endif
❙ return(min{ D(n-1, m) + 1,

         D(n, m-1) +1,                     
         D(n-1, m-1) + replace-cost})
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Dynamic programming

❚ for j = 0 to m;  D(0,j) ← j; endfor
❚ for i = 1 to n;  D(i,0) ← i; endfor
❚ for i = 1 to n

❙ for j = 1 to m

❘ if  ai=bj then
• replace-cost ← 0

❘ else

• replace-cost ← 1
❘ endif
❘ D(i,j) ←  min { D(i-1, j) + 1,

             D(i, j-1) +1,                     
             D(i-1, j-1) + replace-cost}

❙ endfor
❚ endfor 8
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Reading off the operations

❚ Follow the sequence and use each color
of arrow to tell you what operation was
performed.
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Longest Increasing
Subsequence

❚ Given a sequence of integers s1,...,sn find a
subsequence si1

< si2
<...< sik 

with i1<...<ik so
that k is as large as possible.

❚ e.g. Given 9,5,2,8,7,3,1,6,4 as input, 
❙ possible increasing subsequence is 5,7

❙ better is 2,3,6 or 2,3,4 (either or which would be a
correct output to our problem)

17

Find recursive algorithm

❚ Solve sub-problem on s1,...,sn-1 and then
try to extend using sn

❚ Two cases:
❙ Sn is not used

❘ answer is the same answer as on s1,...,sn-1

❙ sn is used
❘ answer is sn preceded by the longest increasing

subsequence in s1,...,sn-1 that ends in a number
smaller than sn

18

Refined recursive idea
(stronger notion of subproblem)

❚ Suppose that we knew for each i<n the longest
increasing subsequence in s1,...,sn that ends in
si.

❚ Now to compute value for i=n find
❙ sn preceded by the maximum over all i<n such that

si<sn of the longest increasing subsequence ending
in si

❚ First find the best length first rather than trying to
actually compute the sequence itself.

❚
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Recurrence

❚ Let L[j]=length of longest increasing
subsequence in s1,...,sn that ends in sj.

❚ L[j]=1+max{L[i] : i<j and si<sj}             
      (where max of an empty set is 0)

❚ Length of longest increasing subsequence:
❙ max{L[i]: 1≤ i ≤ n}
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Computing the actual sequence

❚ For each j, we computed                 
L[j]=1+max{L[i] : i<j and si<sj} 
       (where max of an empty set is 0)

❚ Also maintain P[j] the value of the i that
achieved that max
❙ this will be the index of the predecessor of sj in a

longest increasing subsequence that ends in sj

❙ by following the P[j] values we can reconstruct the
whole sequence in linear time.

21

Longest Increasing
Subsequence Algorithm

❚ for j=1 to n do   
L[j]←1
P[j]←0                        
for i=1 to j-1 do             

if (si<sj & L[i]+1>L[j]) then
                 P[j] ←i
                 L[j] ←L[i]+1
endfor

endfor
❚ Now find j such that L[j] is largest and walk backwards

through P[j] pointers to find the sequence


