
1

1

&6(�������$OJRULWKPV�DQG

&RPSXWDWLRQDO�&RPSOH[LW\

Winter 2001
Lecture 6

Instructor: Paul Beame
TA: Gidon Shavit

2

Algorithm Design Techniques

❚ Dynamic Programming
❙ Given a solution of a problem using smaller

sub-problems, e.g. a recursive solution
❙ Useful when the same sub-problems show up

again and again in the solution

3

A simple case:
Computing Fibonacci Numbers

❚ Recall Fn=Fn-1+Fn-2 and F0=0, F1=1

❚ Recursive algorithm:
❙ Fibo(n)

 if n=0 then
 return(0)
 else if n=1 then
 return(1)
 else
 return(Fibo(n-1)+Fibo(n-2))

4

Call tree - start

F (6)

F (5) F (4)

F (3)

F (4)

F (2)

F (2)

F (3)

F (1) F (0)

1 0

F (1)

5

Full call tree

F (6)

F (2)

F (5) F (4)

F (3)

F (4)

F (2)

F (2)

F (3)F (3)

F (1) F (0)

1 0

F (0)

01

F (1)

F (1) F (0)

1 0
F (1)

F (2) F (1)

1
F (0)

1 0

F (2) F (1)

1
F (0)

1 0

F (1)

1

F (1)

6

Memo-ization

❚ Remember all values from previous
recursive calls

❚ Before recursive call, test to see if value
has already been computed

❚ Dynamic Programming
❙ Convert memo-ized algorithm from a

recursive one to an iterative one

2

7

Fibonacci - Dynamic
Programming Version

❚ FiboDP(n):
F[0]←0
F[1] ←1
for i=2 to n do
 F[i]=F[i-1]+F[i-1]
endfor
return(F[n])

8

Dynamic Programming

❚ Useful when
❙ same recursive sub-problems occur

repeatedly
❙ Can anticipate the parameters of these

recursive calls
❙ The solution to whole problem can be figured

out with knowing the internal details of how
the sub-problems are solved
❘ principle of optimality

9

List partition problem

❚ Given: a sequence of n positive integers
s1,...,sn and a positive integer k

❚ Find: a partition of the list into up to k
blocks:
s1,...,si1

|si1+1...si2
|si2+1... sik-1

 |sik-1+1...sn
so that the sum of the numbers in the
largest block is as small as possible.
i.e. find spots for up to k-1 dividers

10

Greedy approach

❚ Ideal size would be P=

❚ Greedy: walk along until what you have
so far adds up to P then insert a divider

❚ Problem: it may not exact (or correct)
❙ 100 200 400 500 900 | 700 600 | 700 600
❙ sum is 4800 so size must be at least 1600.

∑
n

i
i=1

s /k

11

Recursive solution

❚ Try all possible values for the position of
the last divider

❚ For each position of this last divider
❙ there are k-2 other dividers that must divide

the list of numbers prior to the last divider as
evenly as possible
❘ s1,...,si1

|si1+1...si2
|si2+1... sik-1

 |sik-1+1...sn

❙ recursive sub-problem of the same type

12

Recursive idea

❚ Let M[n,k] the smallest cost (size of
largest block) of any partition of the n into
k pieces.

❚ If between the ith and i+1st is the best
position for the last divider then

 M[n,k]= max (M[i,k-1] ,)

❚ In general

❚ M[n,k]= mini<n max (M[i,k-1] ,)

∑
n

j
j=i+1

s

∑
n

j
j=i+1

s

cost of last block

max cost of 1st k-1 blocks

3

13

Time-saving - prefix sums

❚ Computing the costs of the blocks may be
expensive and involved repeated work

❚ Idea: Pre-compute prefix sums
❙ p[1]=s1 p[2]=s1+s2 p[3]=s1+s2+s3

... p[n]=s1+s2+...+sn

❙ cost: n additions, space n
❙ Length of block si+1+... + sj is just p[j]-p[i]

14

Linear Partition Algorithm

❚ Partition(S,k):
p[0]←0; for i=1 to n do p[i] ←p[i-1]+si
for i=1 to n do M[i,1] ←p[i]
for j=1 to k do M[1,j] ← s1
for i=2 to n do

for j=2 to k do
 M[i,j]←minpos<i{max(M[pos,j-1],

 p[i]-p[pos])}
 D[i,j] ←value of pos where min is

 achieved

15

Linear Partition Algorithm

❚ Partition(S,k):
p[0]←0; for i=1 to n do p[i] ←p[i-1]+si
for i=1 to n do M[i,1] ←p[i]
for j=1 to k do M[1,j] ← s1
for i=2 to n do

for j=2 to k do
 M[i,j]←∞

for pos=1 to i-1 do
 s←max(M[pos,j-1], p[i]-p[pos])

 if M[i,j]>s then
 M[i,j] ←s ; D[i,j] ←pos

