CSE 417: Algorithms and Computational Complexity

Winter 2001 Lecture 6 Instructor: Paul Beame TA: Gidon Shavit

Algorithm Design Techniques

- Dynamic Programming
 - Given a solution of a problem using smaller sub-problems, e.g. a recursive solution
 - I Useful when the same sub-problems show up again and again in the solution

Fibonacci - Dynamic Programming Version

FiboDP(n):

F[0]←0 F[1] ←1 for i=2 to n do F[i]=F[i-1]+F[i-1] endfor return(F[n])

Dynamic Programming

Useful when

- same recursive sub-problems occur repeatedly
- Can anticipate the parameters of these recursive calls
- I The solution to whole problem can be figured out with knowing the internal details of how the sub-problems are solved
 - principle of optimality

List partition problem

- Given: a sequence of n positive integers $s_1,...,s_n$ and a positive integer k
- Find: a partition of the list into up to k blocks:

 $s_1,...,s_{i_1}|s_{i_1+1}...s_{i_2}|s_{i_2+1}...s_{i_{k-1}}|s_{i_{k-1}+1}...s_n$ so that the sum of the numbers in the largest block is as small as possible. i.e. find spots for up to k-1 dividers

Time-saving - prefix sums

- Computing the costs of the blocks may be expensive and involved repeated work
- Idea: Pre-compute prefix sums $p[1]=s_1$ $p[2]=s_1+s_2$ $p[3]=s_1+s_2+s_3$ \dots $p[n]=s_1+s_2+\dots+s_n$
 - cost: n additions, space n
 - Length of block s_{i+1}+... + s_i is just p[j]-p[i]

13

Linear Partition Algorithm

■ Partition(S,k): $p[0] \leftarrow 0; \text{ for } i=1 \text{ to } n \text{ do } p[i] \leftarrow p[i-1]+s_i$ for $i=1 \text{ to } n \text{ do } M[i,1] \leftarrow p[i]$ for $j=1 \text{ to } k \text{ do } M[1,j] \leftarrow s_1$ for i=2 to n dofor j=2 to k do for j=2 to k do $M[i,j] \leftarrow \infty$ for pos=1 to i-1 do $s \leftarrow max(M[pos,j-1], p[i]-p[pos])$ if M[i,j] > s then $M[i,j] \leftarrow s ; D[i,j] \leftarrow pos$ 15