CSE 417: Algorithms and Computational Complexity

Winter 2001
Lecture 6
Instructor: Paul Beame
TA: Gidon Shavit

Algorithm Design Techniques

Dynamic Programming
II Given a solution of a problem using smaller sub-problems, e.g. a recursive solution
\| Useful when the same sub-problems show up again and again in the solution

A simple case:
 Computing Fibonacci Numbers

- Recall $F_{n}=F_{n-1}+F_{n-2}$ and $F_{0}=0, F_{1}=1$

Recursive algorithm:
Fibo(n)
if $\mathrm{n}=0$ then return(0)
else if $\mathrm{n}=1$ then return(1)
else
return(Fibo(n-1)+Fibo(n-2))

Memo-ization

- Remember all values from previous recursive calls
- Before recursive call, test to see if value has already been computed
- Dynamic Programming
\| Convert memo-ized algorithm from a recursive one to an iterative one

Fibonacci - Dynamic
 Programming Version

FiboDP(n):
$\mathrm{F}[0] \leftarrow 0$
$\mathrm{F}[1] \leftarrow 1$
for $\mathrm{i}=2$ to n do
$F[i]=F[i-1]+F[i-1]$
endfor
return($\mathrm{F}[\mathrm{n}]$)

Dynamic Programming

IV Useful when
I same recursive sub-problems occur repeatedly
\| Can anticipate the parameters of these recursive calls
I The solution to whole problem can be figured out with knowing the internal details of how the sub-problems are solved
principle of optimality

List partition problem

- Given: a sequence of n positive integers
$\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{n}}$ and a positive integer k
Find: a partition of the list into up to k blocks:
$s_{1}, \ldots, s_{i_{1}}\left|s_{i_{1}+1} \ldots s_{i_{2}}\right| s_{i_{2}+1} \ldots s_{i_{k-1}} \mid s_{i_{k-1}+1} \ldots s_{n}$ so that the sum of the numbers in the largest block is as small as possible. i.e. find spots for up to k-1 dividers

Greedy approach

|| Ideal size would be $P=\sum_{i=1}^{n} s_{i} / k$

- Greedy: walk along until what you have so far adds up to P then insert a divider

Problem: it may not exact (or correct)
|| 100200400500900 | 700600 | 700600
\| sum is 4800 so size must be at least 1600 .

Recursive idea

- Let $\mathrm{M}[\mathrm{n}, \mathrm{k}]$ the smallest cost (size of largest block) of any partition of the n into k pieces.
II If between the $i^{\text {th }}$ and $\mathrm{i}+1^{\text {st }}$ is the best position for the last divider then cost of last block
$M[n, k]=\max \left(M[i, k-1], \sum_{j=+1}^{n} s_{j}^{k}\right)$
In general max cost of 1stk-1 blocks
\| $M[n, k]=\min _{\mathrm{i}<\mathrm{n}} \max \left(M[i, k-1], \sum_{\mathrm{j}=\mathrm{i}+1}^{\mathrm{n}} \mathrm{s}_{\mathrm{j}}\right)$

Time-saving - prefix sums

- Computing the costs of the blocks may be expensive and involved repeated work

II Idea: Pre-compute prefix sums
|l $\mathrm{p}[1]=\mathrm{s}_{1} \quad \mathrm{p}[2]=\mathrm{s}_{1}+\mathrm{s}_{2} \quad \mathrm{p}[3]=\mathrm{s}_{1}+\mathrm{s}_{2}+\mathrm{s}_{3}$ $\mathrm{p}[\mathrm{n}]=\mathrm{s}_{1}+\mathrm{S}_{2}+\ldots+\mathrm{S}_{\mathrm{n}}$
| cost: n additions, space n
I Length of block $\mathrm{s}_{\mathrm{i}+1}+\ldots+\mathrm{s}_{\mathrm{j}}$ is just $\mathrm{p}[\mathrm{j}]-\mathrm{p}[\mathrm{i}]$

Linear Partition Algorithm

II Partition(S,k):
$\mathrm{p}[0] \leftarrow 0$; for $\mathrm{i}=1$ to n do $\mathrm{p}[\mathrm{i}] \leftarrow \mathrm{p}[\mathrm{i}-1]+\mathrm{s}_{\mathrm{i}}$ for $i=1$ to n do $M[i, 1] \leftarrow p[i]$
for $\mathrm{j}=1$ to k do $\mathrm{M}[1, \mathrm{j}] \leftarrow \mathrm{s}_{1}$
for $\mathrm{i}=2$ to n do
for $\mathrm{j}=2$ to k do
$M[i, j] \leftarrow \min _{\text {possil }}\{\max (\mathrm{M}[\mathrm{pos}, \mathrm{j}-1]$, $p[i]-p[p o s])\}$
$D[i, j] \leftarrow$ value of pos where min is achieved

Linear Partition Algorithm

```
| Partition(S,k):
    p[0]\leftarrow0; for i=1 to n do p[i] }\leftarrow\textrm{p}[i-1]+\mp@subsup{\textrm{s}}{\textrm{i}}{
    for i=1 to n do M[i,1] \leftarrowp[i]
    for j=1 to k do M[1,j]}\leftarrow\mp@subsup{\textrm{s}}{1}{
    for i=2 to n do
        for j=2 to k do
            M[i,j]<\infty
            for pos=1 to i-1 do
                s\leftarrowmax(M[pos,j-1], p[i]-p[pos])
                if M[i,j]>s then
                    M[i,j]}\leftarrows;D[i,j]\leftarrowpos 15
```

