CSE 417: Algorithms and
Computational Complexity

Winter 2001
Lecture 5
Instructor: Paul Beame
TA: Gidon Shavit

Fixing a Misunderstanding

We have looked at
type of complexity analysis
worst-case, best-case, average-case
types of function bounds
0,Q,0
These two considerations are orthogonal
to each other

one can do any type of function bound with
any type of complexity analysis

Complexity analysis overview

Type of
Complexity Type of
Analysis Bound

Alg
o = =l

different running

time for each Function mapping Nice fgrmgla
input string input length to app'th'maf'zg
running time funtime o

Usually we represent the function in the middle using

a recurrence relation rather than explicitly s

Quicksort Analysis

Partition does n-1 comparisons on a list of
length n

pivot is compared to each other element
If pivot is it largest then two subproblems
are of size i-1 and n-i

Pivot is equally likely to be any one of 15t
through nt largest
n

T(n):n—1+% 5 (T6-1)+T-)

1= 4

Quicksort analysis

n

o1 . »
T(n)=n 1+nZ(T(| 1)+T(n-1)

1+ 2T(1)+2T(2)+...+2T(n-1)

n
OnT(N)=n(n-1)+2T(1)+2T(2)+...+2T(n-1)
(n+)T(n+1)=(n+1)n+2T(1)+2T(2)+...+2 T(n)
O(Mm+1)T(n+1)-nT(n)=2T(n)+2n
(n+1)T(n+1)=(n+2)T(n)+2n
IjT(n+1):m+ 2n

n+2 n+l (n+1)(n+2) 5

=N-

Quicksort analysis

T(m)
n+1

2
u (?("""1)5(?("‘)"'ni_'_l

Let Q(n)=

aQ(n)< 2(1+%+%+...+}) =2H,=2Inn=1.38log,n
n

(Recallthat Inn= f 1/x dx)

0T(n)=1.38nlog,n

Algorithm Design Techniques

General overall idea
Reduce solving a problem to a smaller problem or
problems of the same type

Greedy algorithms
Used when one needs to build something a piece at
atime

Repeatedly make the greedy choice - the one that
looks the best right away
e.g. closest pair in TSP search

Usually fast if they work

Algorithm Design Techniques

Divide & Conquer
Reduce problem to one or more sub-problems of the
same type
Each sub-problem is at most a constant fraction of
the size of the original problem

e.g. Mergesort, Binary Search, Strassen’s Algorithm,
Quicksort (kind of)

Fast exponentiation

Power(a,n)
Input: integer n and number a
Output: an

Obvious algorithm
n-1 multiplications

Observation:
if n is even, n=2m, then a"=am.am

Divide & Conquer Algorithm

Power(a,n)
if n=0 then
return(1)
else
X « Power(a,[h/20)
if nis even then
return(x-x)
else
return(a-x-x)

Analysis

Worst-case recurrence
T(n)=T(/2D)+2

By master theorem
T(n)=0O(log n)

More precise analysis:
T(n)= Oog,n0 + # of 1's in n’s binary representation

A Practical Application- RSA

Instead of a” want a” mod N
a* mod N = ((@ mod N)-(al mod N)) mod N
same algorithm applies with each x-y replaced by
((x mod N)«(y mod N)) mod N

In RSA cryptosystem (widely used for security)
need a” mod N where a, n, N each typically have 1024 bits
Power: at most 2048 multiplies of 1024 bit numbers
relatively easy for modern machines
Naive algorithm: 21024 multiplies

Binary search for roots
(bisection method)

— W

Given:

continuous function f and two points a<b with
f(a)<0 and f(b)>0

Find:
approximation to c¢ s.t. f(c)=0 and a<c<b

