## CSE 417: Algorithms and Computational Complexity

Winter 2001
Lecture 5
Instructor: Paul Beame
TA: Gidon Shavit

## Fixing a Misunderstanding

We have looked at
II type of complexity analysis
worst-case, best-case, average-case
\| types of function bounds

$$
\mathrm{O}, \Omega, \Theta
$$

These two considerations are orthogonal to each other
I one can do any type of function bound with any type of complexity analysis

## Quicksort Analysis

Partition does $\mathbf{n - 1}$ comparisons on a list of length $\mathbf{n}$
\| pivot is compared to each other element
II If pivot is $\mathrm{i}^{\text {th }}$ largest then two subproblems are of size $\mathbf{i - 1}$ and $\mathbf{n - i}$

- Pivot is equally likely to be any one of $\mathbf{1}^{\text {st }}$ through $\mathbf{n}^{\text {th }}$ largest

$$
T(n)=n-1+\frac{1}{n} \sum_{i=1}^{n}(T(i-1)+T(n-i))
$$

sually we represent the function in the middle using a recurrence relation rather than explicitly

## Quicksort analysis

$$
\begin{aligned}
& T(n)=n-1+\frac{1}{n} \sum_{i=1}^{n}(T(i-1)+T(n-i)) \\
& \quad=n-1+\frac{2 T(1)+2 T(2)+\ldots+2 T(n-1)}{n} \\
& \therefore n T(n)=n(n-1)+2 T(1)+2 T(2)+\ldots+2 T(n-1) \\
& (n+1) T(n+1)=(n+1) n+2 T(1)+2 T(2)+\ldots+2 T(n) \\
& \therefore(n+1) T(n+1)-n T(n)=2 T(n)+2 n \\
& (n+1) T(n+1)=(n+2) T(n)+2 n \\
& \therefore \frac{T(n+1)}{n+2}=\frac{T(n)}{n+1}+\frac{2 n}{(n+1)(n+2)}
\end{aligned}
$$

## Quicksort analysis

Let $Q(n)=\frac{T(n)}{n+1}$
$\therefore Q(\mathrm{n}+1) \leq \mathrm{Q}(\mathrm{n})+\frac{2}{\mathrm{n}+1}$
$\therefore Q(n) \leq 2\left(1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}\right)=2 H_{n} \approx 2 \ln n=1.38 \log _{2} n$
(Recall that $\ln n=\int_{1}^{n} 1 / x d x$ )
$\therefore \mathrm{T}(\mathrm{n}) \approx 1.38 \mathrm{n} \log _{2} \mathrm{n}$

## Algorithm Design Techniques

- General overall idea

I Reduce solving a problem to a smaller problem or problems of the same type
|| Greedy algorithms
\| Used when one needs to build something a piece at a time
I Repeatedly make the greedy choice - the one that looks the best right away
e.g. closest pair in TSP search

Usually fast if they work

## Algorithm Design Techniques

- Divide \& Conquer
\| Reduce problem to one or more sub-problems of the same type
(1) Each sub-problem is at most a constant fraction of the size of the original problem
e.g. Mergesort, Binary Search, Strassen's Algorithm Quicksort (kind of)


## Fast exponentiation

## Power(a,n)

Input: integer $\mathbf{n}$ and number a
1 Output: an
|. Obvious algorithm
| n-1 multiplications

Observation:
I if $\mathbf{n}$ is even, $\mathbf{n}=\mathbf{2 m}$, then $\mathbf{a}^{\mathbf{n}}=\mathbf{a}^{m} \cdot \mathbf{a}^{m}$

## Divide \& Conquer Algorithm

```
| Power(a,n)
    if n=0 then
            return(1)
        else
            x\leftarrowPower(a,\lfloorn/2\rfloor)
            if }\textrm{n}\mathrm{ is even then
                return(x\bulletx)
            else
                    return(a\bulletx•x)
```


## Analysis

Worst-case recurrence
I $T(n)=T(\lfloor n / 2\rfloor)+2$
|l By master theorem
| $\mathrm{T}(\mathrm{n})=\mathrm{O}(\log \mathrm{n})$

More precise analysis:

- $\mathrm{T}(\mathrm{n})=\left\lceil\log _{2} \mathrm{n}\right\rceil+\#$ of 1's in n's binary representation


## A Practical Application- RSA

II Instead of $\mathbf{a}^{\mathrm{n}}$ want $\mathbf{a}^{\mathrm{n}} \bmod \mathbf{N}$
$\mathbf{a}^{i+j} \bmod \mathbf{N}=\left(\left(\mathbf{a}^{i} \bmod \mathbf{N}\right) \cdot(\mathbf{a} \bmod \mathbf{N})\right) \bmod \mathbf{N}$
I same algorithm applies with each $\mathbf{x} \cdot \mathbf{y}$ replaced by $((\mathbf{x} \bmod \mathbf{N}) \cdot(\mathbf{y} \bmod \mathbf{N})) \bmod \mathbf{N}$
\| In RSA cryptosystem (widely used for security)
I need $\mathbf{a}^{\mathbf{n}} \bmod \mathbf{N}$ where $\mathbf{a}, \mathbf{n}, \mathbf{N}$ each typically have 1024 bits
I Power: at most 2048 multiplies of 1024 bit numbers relatively easy for modern machines
Naive algorithm: $\mathbf{2}^{1024}$ multiplies

## Binary search for roots

(bisection method)


- Given:
l continuous function $\mathbf{f}$ and two points $\mathbf{a}<\mathbf{b}$ with $f(a)<0$ and $f(b)>0$
I. Find:

I approximation to $\mathbf{c}$ s.t. $\mathbf{f ( c ) = 0}$ and $\mathbf{a}<\mathbf{c}<\mathbf{b}$

