
1

1

&6(�������$OJRULWKPV�DQG

&RPSXWDWLRQDO�&RPSOH[LW\

Winter 2001
Lecture 5

Instructor: Paul Beame
TA: Gidon Shavit

2

Fixing a Misunderstanding

❚ We have looked at
❙ type of complexity analysis

❘ worst-case, best-case, average-case

❙ types of function bounds
❘ O, Ω, Θ

❚ These two considerations are orthogonal
to each other
❙ one can do any type of function bound with

any type of complexity analysis

3

Complexity analysis overview

Alg
A

different running
time for each
input string

Type of
Complexity

Analysis

Function mapping
input length to

running time

Type of
Bound

T(n) grows
like nlog2n

Nice formula
approximating
runtime of A

Usually we represent the function in the middle using
a recurrence relation rather than explicitly

4

Quicksort Analysis

❚ Partition does n-1 comparisons on a list of
length n
❙ pivot is compared to each other element

❚ If pivot is ith largest then two subproblems
are of size i-1 and n-i

❚ Pivot is equally likely to be any one of 1st

through nth largest

()∑
=

−+−+−=
n

1i

i)T(n1)T(i
n
1

1nT(n)

5

Quicksort analysis

()

2)1)(n(n
2n

1n
T(n)

2n
1)T(n

2n2)T(n)(n1)1)T(n(n

2nT(n) 2nT(n)-1)1)T(n(n

T(n) 2...T(2) 2T(1) 21)n(n1)1)T(n(n

1)-T(n 2...T(2) 2T(1) 21)-n(nnT(n)
n

1)-T(n 2...T(2) 2T(1) 2
 1-n

i)T(n1)T(i
n
1

1nT(n)
n

1i

++
+

+
=

+
+∴

++=++
+=++∴

+++++=++
++++=∴

++++=

−+−+−= ∑
=

6

Quicksort analysis

nn 1.38T(n)

dx) 1/x n that (Recall

n381n 22H
n
1

3
1

2
1

2(1Q(n)

1n
2

Q(n)1)Q(n

1n
T(n)

Q(n) Let

2

n

2n

log

ln

ln

1

log.)...

≈∴

=

=≈=++++≤∴

+
+≤+∴

+
=

∫

2

7

Algorithm Design Techniques

❚ General overall idea
❙ Reduce solving a problem to a smaller problem or

problems of the same type

❚ Greedy algorithms
❙ Used when one needs to build something a piece at

a time

❙ Repeatedly make the greedy choice - the one that
looks the best right away

• e.g. closest pair in TSP search

❙ Usually fast if they work

8

Algorithm Design Techniques

❚ Divide & Conquer
❙ Reduce problem to one or more sub-problems of the

same type
❙ Each sub-problem is at most a constant fraction of

the size of the original problem
❘ e.g. Mergesort, Binary Search, Strassen’s Algorithm,

Quicksort (kind of)

9

Fast exponentiation

❚ Power(a,n)
❙ Input: integer n and number a
❙ Output: an

❚ Obvious algorithm
❙ n-1 multiplications

❚ Observation:
❙ if n is even, n=2m, then an=am•am

10

Divide & Conquer Algorithm

❚ Power(a,n)
if n=0 then

return(1)
else

x ←Power(a,n/2)
if n is even then

return(x•x)
 else

return(a•x•x)

11

Analysis

❚ Worst-case recurrence
❙ T(n)=T(n/2)+2

❚ By master theorem
❙ T(n)=O(log n)

❚ More precise analysis:
❙ T(n)= log2n + # of 1’s in n’s binary representation

12

A Practical Application- RSA

❚ Instead of an want an mod N
❙ ai+j mod N = ((ai mod N)•(aj mod N)) mod N
❙ same algorithm applies with each x•y replaced by

❘ ((x mod N)•(y mod N)) mod N

❚ In RSA cryptosystem (widely used for security)
❙ need an mod N where a, n, N each typically have 1024 bits

❙ Power: at most 2048 multiplies of 1024 bit numbers
❘ relatively easy for modern machines

❙ Naive algorithm: 21024 multiplies

3

13

Binary search for roots
(bisection method)

❚ Given:
❙ continuous function f and two points a<b with

f(a)<0 and f(b)>0

❚ Find:
❙ approximation to c s.t. f(c)=0 and a<c<b

